A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kuriki, M.

Paper Title Page
THPKF039 Study of Photo-cathode RF Gun for a High Brightness Electron Beam 2359
 
  • Y. Yamazaki
    JNC/OEC, Ibaraki-ken
  • S. Araki, H. Hayano, M. Kuriki, T. Muto, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • M.K. Fukuda, K. Hirano, M. Nomura, M. Takano
    NIRS, Chiba-shi
 
  We are going to develop a compact high-brightness electron beam system to adopt industrial and medical applications. A multi-bunch photo-cathode RF gun has been developed to generate 100 bunches beam with 2.8ns spacing and 5nC charge per bunch. We will report details of the development, especially photo-cathode production and emission characteristics from cathode by the laser.  
THPLT061 Development of a Multibunch Photo-cathode RF Gun System 2625
 
  • J. Urakawa, M. Akemoto, S. Araki, H. Hayano, M. Kuriki, T. Muto, N. Terunuma, Y. Yamazaki
    KEK, Ibaraki
  • M.K. Fukuda, K. Hirano, M. Nomura, M. Takano
    NIRS, Chiba-shi
 
  A multibunch photo-cathode RF gun system has been developed as a electron source for the production of quasi-monoenergetic X-rays based on inverse Compton scattering. This system consists of a photocathode rf gun, a cathode system, a laser system, beam diagnostic sections, and beam dump line. The gun produces 100 bunches with a 2.8ns bunch spacing and 5nC bunch charge. We will report on the RF gun system with 4 bending dipoles of a chicane which makes the laser injection to the cathode with perpendicular angle possible.  
THPLT083 Femto-second Bunch Length Measurement using the RF Deflector 2688
 
  • S. Kashiwagi, G. Isoyama, R. Kato, K.K. Kobayashi, Y. Matsui, A. Saeki, J. Yang
    ISIR, Osaka
  • H. Hayano, M. Kuriki
    KEK, Ibaraki
  • M. Kudo, M. Washio
    RISE, Tokyo
 
  The traveling wave type rf cavities operating in dipole mode (TM110-like) is being developed for a measurement of femto-second electron bunch. The femto-second electron bunch is used the pulse radiolysis experiments for the studies on radiation physics and chemistry with femto-second time resolution. The resonant frequency is tuned to the designing value 2856 MHz, which is accelerating frequency of a photo-injector linac at ISIR Osaka University. Further, we are planning to apply the design of the traveling wave rf deflector to a X-band crab cavities for the Global Linear Collider (GLC) project. In this conference, we will report the design of the traveling wave rf deflector and the result of cold test.