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Abstract 
A multibunch photo-cathode RF gun system has been 

developed as an electron source for the production of 
quasi-monochromatic X-rays based on inverse Compton 
scattering. This system consists of a photocathode RF gun, 
a cathode system, a laser system, a beam diagnostic 
section, and a control system. The gun produces 100 
bunches with a 2.8 ns bunch spacing and 5 nC bunch 
charge. We report on the RF gun system with 4 bending 
dipoles of a chicane, which makes the laser injection to 
the cathode with perpendicular angle possible. 

 INTRODUCTION 
We plan to produce a high flux x-ray for medical use 

with the compact system consisted of a S-band linac, a 
small storage ring [1], a mode-locked laser and a Fabry-
Perot optical cavity [2].  The multi-bunch electron beam 
is necessary in this system.  We have employed a laser-
driven photocathode RF gun as a high intense electron 
beam source to produce the high flux x-ray.  A RF gun 
test bench (RFGTB) is under construction at Assembly 
Hall in KEK to conduct the acceleration test of the high 
intense beam with low emittance and low energy spread.   

A schematic layout of the RFGTB is shown in Fig.1.  
We use 357 MHz passively mode-locked laser and a 
Cs2Te cathode that has high quantum efficiency (QE) of 
about 1% to generate the multi-bunch beam with 2.8 ns 
bunch spacing.  100-bunch electron beam of up to 7MeV 
with 5 nC bunch charge will be generated by the multi-
bunch photo-cathode RF gun.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: A schematic layout of the RFGTB 

The UV light is injected to the cathode surface with 
perpendicular angle of 90 degree from the bump of 4 
bending dipoles of a chicane.  Beam dynamics studies 
have been done on the RF gun.  Beam parameters are 
shown in Table 1.  

Table 1: Beam parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EXPERIMENTAL SETUP 

Photo-cathode RF GUN 
The RF gun cavity is the same as 1.6 cell BNL GUN 

IV being used at injector of the Accelerator Test Facility 
(ATF) in KEK[3][4][5].     The end plate of the half-cell 
cavity has a hole with a diameter of 16mm to install a 
cathode plug in it.  Fig. 2 shows the cross section of the 
RF gun and the cathode plug.     
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Cross section of the RF gun and the cathode 
plug. 

Beam energy (max.) 7MeV
Bunch charge(max.) 5nC/bunch
Number of bunches(max.) 100/pulse
Repetition rate (max.) 12.5Hz
RF frequency 2856MHz
Bunch frequency 357MHz
Bunch separation 2.8ns

Photo-cathode Cs2Te

QE (aim) >3%
Laser energy (aim) >3µJ/bunch
Laser wavelength 266nm
Laser width (FWHM) 10ps
RF pulse width (max.) 4µs
RFGUN input power (max.) 20MW
Solenoid magnetic field  (max.) 3.2kGauss
Chicane magnetic field 500Gauss
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The longitudinal accelerating field Ez has been 
measured as a function of the position in the RF Gun 
cavity using a frequency perturbation technique.  The Q 
value was 10000.  The shunt impedance was 66 ΜΩ/m.  
Fig.3 shows the on-axis electric field distribution in the 
RF gun cavity at the RF cavity power 15 MW.  The peak 
RF input power of the RF gun can be up to 20 MW. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Electric field distribution in the RF gun cavity at 
the RF cavity power 15MW. 

Cathode System 
The cathode system consists of a loading chamber, a 

transport chamber, and an evaporation chamber.  QE 
degrades rapidly by the oxygenation.  This system allows 
to change and to transport the cathode plug without 
breaking the high vacuum.  We load the cathode plug by 
the mover of the loading chamber.  5 cathode plugs can 
be stored in the preparation chamber with the transport 
chamber.  Cesium is evaporated on a 10 nm thick 
Tellurium layer on the Molybdenum substrate of the plug 
in the evaporation chamber.  The plug is transported to 
the loading chamber from the evaporation chamber by the 
transport chamber. 

Laser system 
A laser system consists of a mode-locked Nd:YVO4 

oscillator with an output power 7W at 1064nm and two 
flash-lamp-pumped amplifiers with an end mirror.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Schematic view of experimental setup 

The oscillator is 357 MHz passively mode-locked 
diode-pumped solid-state laser using semiconductor 
saturable absorber mirrors (SESAMs).  Two pockels cells 
are used to select a portion of a 357 MHz pulse train.  A 
wavelength of 1064 nm infrared (IR) light has 60µJ each.  
The amplified pulse is spatially filtered and then 
frequency quadrupled to a wavelength of 266 nm 
ultraviolet (UV) light with pulse energy of over 3 µJ.  The 
UV light of 2.4 µJ generates bunch charge of 5nC 
assuming QE of 1%.   

Beam Diagnostic Section 
Fig.4 shows the schematic view of the experimental 

setup. We will measure the emittance with slits and the 
wire scanner, the bunch length with a streak camera and a 
OTR system, bunch-by-bunch beam energy with an 
energy analyzer magnet and a beam position monitor.  
These quantities will be measured as a function of beam 
parameters and solenoid magnetic field among others. 

Control System 
Fig.5 shows the RFGTB control system.  Since the 

system to be controlled is small-sized one, costly 
solutions were not acceptable. We adopted a PC-based 
control system with Experimental Physics and Industrial 
Control System (EPICS) [6].  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: The control system of RFGTB 
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The control system comprises of three hardware 
components: a desktop PC, a Programmable Logical 
controller (PLC) and a CC/NET which is a special 
CAMAC controller with a PC/104 CPU board installed in 
it [7]. They communicate by Ethernet[8]. Each of the PC 
runs EPICS 3.14.4 on Linux operating system. The PC 
interfacing the PLC controls the klystron modulator. It 
also runs a graphical user interface and a data archiving 
tool of EPICS. The CC/NET controls the klystron RF 
power. A sequence control program of EPICS was 
developed for automatic RF conditioning. 

SIMULATION 
We simulated the beam trajectory for the beam line of 

the RFGTB with the chicane magnets by the general 
particle tracer code (GPT).  In the simulation, bunch 
charge was fixed to 2 nC.  Here, the laser injection phase 
of 90 degree corresponds to the maximum electric field 
140MV/m on the cathode.  The beam energy was 6MeV. 

Launching the electron beam in the small laser 
injection phase compresses the bunch length in the RF 
gun cavity because the beam energy gain of the tail is 
higher than one of the head [9].  The simulation result 
shows that the beam can be transported to the end of the 
beam line without increasing the bunch length within the 
laser injection phase of 20 degree, as shown in Figs.6 and 
7. In the same condition, the normalized emittance does 
not grow worse, as shown in Fig.8.   

SUMMARY AND FUTURE PLAN 
We have prepared the test bench to study the multi-

bunch photo-cathode RF gun.  The gun produces 100 
bunches with a 2.8 ns bunch spacing and 5 nC bunch 
charge.  The simulation shows that the bunch charge of 2 
nC can be transported without greatly increasing the 
bunch length and the normalized emittance in the laser 
injection phase of 20 degree. We will start the beam test 
after RF conditioning of the RF gun cavity in July this 
year.  
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Figure 6: Horizontal beam trajectory as a function of a 
position from the cathode 
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Figure 7: Electron beam bunch length as a function of a 
position from the cathode.  
 

 
 
 
 
 
 
 
 
 
 
Figure 8: The normalized emittance in the laser injection 

phase of 20 degree. 
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