A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Seryi, A.

Paper Title Page
WEPEB046 Optimization of the CLIC Baseline Collimation System 2794
 
  • J. Resta-López
    JAI, Oxford
  • D. Angal-Kalinin, J.-L. Fernandez-Hernando, F. Jackson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • B. Dalena, D. Schulte, R. Tomás
    CERN, Geneva
  • A. Seryi
    SLAC, Menlo Park, California
 
 

Important efforts have recently been dedicated to the improvement of the design of the baseline collimation system of the Compact Linear Collider (CLIC). Different aspects of the design have been optimized: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers have also been reviewed to minimize wakefields; in addition, the optics design have been polished to improve the collimation efficiency. This paper describes the current status of the CLIC collimation system after this optimization.

 
WEOBMH01 Operational Experiences Tuning the ATF2 Final Focus Optics Towards Obtaining a 37nm Electron Beam IP Spot Size 2383
 
  • G.R. White, A. Seryi, M. Woodley
    SLAC, Menlo Park, California
  • S. Bai
    IHEP Beijing, Beijing
  • P. Bambade, Y. Renier
    LAL, Orsay
  • B. Bolzon
    IN2P3-LAPP, Annecy-le-Vieux
  • Y. Kamiya
    ICEPP, Tokyo
  • S. Komamiya, M. Oroku, Y. Yamaguchi, T. Yamanaka
    University of Tokyo, Tokyo
  • K. Kubo, S. Kuroda, T. Okugi, T. Tauchi
    KEK, Ibaraki
  • E. Marin
    CERN, Geneva
 
 

The primary aim of the ATF2 research accelerator is to test a scaled version of the final focus optics planned for use in next-generation linear lepton colliders. ATF2 consists of a 1.3 GeV linac, damping ring providing low-emittance electron beams (<12pm in the vertical plane), extraction line and final focus optics. The design details of the final focus optics and implementation at ATF2 are presented elsewhere* . The ATF2 accelerator is currently being commissioned, with a staged approach to achieving the design IP spot size. It is expected that as we implement more demanding optics and reduce the vertical beta function at the IP, the tuning becomes more difficult and takes longer. We present here a description of the implementation of the overall tuning algorithm and describe operational experiences and performances


* Beam-Based Alignment, Tuning and Beam Dynamics Studies for the ATF2 Extraction Line and Final Focus System. Glen R. White , S. Molloy, M. Woodley, (SLAC). EPAC08-MOPP039, SLAC-PUB-13303.

 

slides icon

Slides

 
WEPE003 Design of an 18 MW Beam Dump for 500 GeV Electron/Positron Beams at an ILC 3341
 
  • J.W. Amann, R. Arnold, A. Seryi, D.R. Walz
    SLAC, Menlo Park, California
  • K. Kulkarni, P. Rai, P. Satyamurthy, V. Tiwari
    BARC, Mumbai
  • H. Vincke
    CERN, Geneva
 
 

Significant progress has been made in the design of an 18MW Beam Dump for 500 GeV electron/positron beams at an ILC. The beam dump design is based on circulating water with a vortex-like flow pattern to dissipate and remove the energy deposited by the beam. Multi-dimensional technology issues have been addressed to design the beam dump system. Detailed thermal-hydraulic analysis was carried out in all the critical regions of the beam dump which include, 1) location of highest volumetric power deposition by the beam, 2) location of highest linear power deposition, 3) entrance window region, 4) vessel walls etc. Based on this analysis, the sizing of the beam dump and its components, water flow rate and inlet jet velocity, optimum location of the beam path in the beam dump, beam sweep radius etc have been estimated. In addition, preliminary mechanical design of the beam dump, cooling circuit details, sizing of the hydrogen/oxygen recombiner system, ion exchange and 7Be removal, prompt and residual radioactivity studies etc have been carried out. Details of this work will be presented.

 
WEPE030 The CLIC BDS Towards the Conceptual Design Report 3419
 
  • R. Tomás, B. Dalena, E. Marin, D. Schulte, G. Zamudio
    CERN, Geneva
  • D. Angal-Kalinin, J.-L. Fernandez-Hernando, F. Jackson
    Cockcroft Institute, Warrington, Cheshire
  • J. Resta-López
    JAI, Oxford
  • A. Seryi
    SLAC, Menlo Park, California
 
 

The CLIC Conceptual Design Report must be ready by 2010. This paper aims at addressing all the critical points of the CLIC BDS to be later implemented in the CDR. This includes risk evaluation and possible solutions to a number of selected points. The smooth and practical transition between the 500 GeV CLIC and the design energy of 3 TeV is also studied.

 
WEPE035 Development of High Average Power Lasers for the Photon Collider 3434
 
  • J. Gronberg, B. Stuart
    LLNL, Livermore, California
  • A. Seryi
    SLAC, Menlo Park, California
 
 

The realization of a photon collider option at a future TeV scale electron linear collider requires the generation of high average power picosecond laser pulses. Recirculating cavities have been proposed to reduce the amount of laser power that needs to be generated, however, these cavities impose stringent limits on the wavefront quality and stability of the laser architecture. We report on a design study of a high average power laser amplifier architecture which can produce the required laser time structure and stability to drive these recirculating cavities.

 
THPE020 Scenarios for the ATF2 Ultra-Low Betas Proposal 4554
 
  • E. Marin, R. Tomás
    CERN, Geneva
  • P. Bambade
    LAL, Orsay
  • S. Kuroda, T. Okugi, T. Tauchi, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • B. Parker
    BNL, Upton, Long Island, New York
  • A. Seryi, G.R. White, M. Woodley
    SLAC, Menlo Park, California
 
 

The current ATF2 Ultra-Low beta proposal was designed to achieve 20nm vertical IP beam size without considering the multipolar components of the FD magnets. In this paper we describe different scenarios that avoid the detrimental effect of these multipolar errors in the FD. The simplest approach consists in modifying the optics but other solutions are studied as the introduction of new higher order magnets or the replacement of the FD with SC technology. The practical aspects of such an upgrade are the tuning performance and the compatibility with existing devices and instrumentation. These are fully addressed in the paper.

 
WEPE041 A Superconducting Magnet Upgrade of the ATF2 Final Focus 3440
 
  • B. Parker, M. Anerella, J. Escallier, P. He, A.K. Jain, A. Marone, P. Wanderer, K.-C. Wu
    BNL, Upton, Long Island, New York
  • P. Bambade
    LAL, Orsay
  • B. Bolzon, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux
  • P.A. Coe, D. Urner
    OXFORDphysics, Oxford, Oxon
  • C. Hauviller, E. Marin, R. Tomás, F. Zimmermann
    CERN, Geneva
  • N. Kimura, K. Kubo, T. Kume, S. Kuroda, T. Okugi, T. Tauchi, N. Terunuma, T. Tomaru, K. Tsuchiya, J. Urakawa, A. Yamamoto
    KEK, Ibaraki
  • A. Seryi, C.M. Spencer, G.R. White
    SLAC, Menlo Park, California
 
 

The KEK ATF2 facility, with a well instrumented beam line and Final Focus (FF), is a proving ground for linear collider (LC) technology to demonstrate the extreme beam demagnification and spot stability needed for a LC FF*. ATF2 uses water cooled magnets but the baseline ILC calls for a superconducting FF**. Thus we plan to replace some ATF2 FF magnets with superconducting ones made via direct wind construction as planned for the ILC. With no cryogenic supply at ATF2, we look to cool magnets and current leads with a few cryocoolers. ATF2 FF coil winding is underway at BNL and production warm magnetic measurements indicate good field quality. Having FF magnets with larger aperture and better field quality than present FF might allow reducing the beta function at the FF for study of focusing regimes relevant to CLIC. Our ATF2 magnet cryostat will have laser view ports for cold mass movement measurement and FF support and stabilization requirements under study. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet performance to that of a full length ILC R&D prototype at BNL. We want to be able to predict LC FF performance with confidence.


* ATF2 proposal, volumes 1 and 2 at http://lcdev.kek.jp/ILC-AsiaWG/WG4notes/atf2/proposal/index.html
** International Linear Collider Reference Design Report, ILC-REPORT-2007-001, August 2007.