Author: Zha, H.
Paper Title Page
MOPB008 Approximation of Space Charge Effect in the Presence of Longitudinal Magnetic Fields 27
 
  • H.Y. Li, H.B. Chen, Q. Gao, W.H. Gu, J.R. Shi, H. Zha
    TUB, Beijing, People’s Republic of China
 
  The space charge effect plays a significant role in the evolution of phase space during beam transport. Applying an external longitudinal magnetic field has been shown to effectively reduce beam expansion through the mechanism of beam rotation. In this article, we present a fast approximation algorithm for estimating the impact of an external magnetic field on beam expansion. The algorithm enables efficient computations and provides insights into controlling the phase space dynamics of the beam in the presence of longitudinal magnetic fields.  
poster icon Poster MOPB008 [0.447 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SAP2023-MOPB008  
About • Received ※ 30 June 2023 — Revised ※ 11 July 2023 — Accepted ※ 12 July 2023 — Issued ※ 30 April 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB013 Multipole Field Optimization of X-Band High Gradient Structure 108
 
  • B.Y. Feng, H.B. Chen, Q. Gao, X. Lin, J.R. Shi, H. Zha
    TUB, Beijing, People’s Republic of China
 
  The X-band constant gradient acceleration structure plays a crucial role in the VIGAS project. However, the presence of a multipole field component in the struc-ture’s coupler leads to an increase in ray bandwidth and a decrease in yield, ultimately affecting the quality of the generated rays. Through calculations, it has been determined that the quadrupole field component is particularly prominent in the original structure, ac-counting for 29.5% of the fundamental mode strength. Therefore, it is necessary to modify the cavity struc-ture of the coupler. By altering the shape of the cavity to two staggered circles, the objective of reducing the quadrupole field is achieved. The optimized quadru-pole field component now accounts for approximately 0.3% of the fundamental mode strength. Subsequently, the non-resonant perturbation method was employed to simulate and experimentally measure the magnitude of the multipole field component in the actual acceler-ation cavity.  
poster icon Poster TUPB013 [0.350 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SAP2023-TUPB013  
About • Received ※ 30 June 2023 — Accepted ※ 11 July 2023 — Issued ※ 27 September 2024  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)