Author: Yakovenko, S.
Paper Title Page
TUYCH01
Application of the Beam Cooling Methods at the NICA Project  
 
  • G.V. Trubnikov, I.N. Meshkov, A.O. Sidorin, A.V. Smirnov, S. Yakovenko
    JINR, Dubna, Moscow Region, Russia
  • T. Katayama
    GSI, Darmstadt, Germany
 
  The Nuclotron-based Ion Collider fAcility (NICA) is a new accelerator complex being constructed at JINR aimed to provide experiments with colliding heavy ions up to Au for experimental study of hot and dense strongly interacting baryonic matter and search for possible signs of the mixed phase and critical endpoint in the centre-of-mass energy range sq.root(SNN) = 4-11 GeV. This facility includes new 3 MeV/u linac, 600 MeV/u booster synchrotron (Booster), upgraded superconducting (SC) synchrotron Nuclotron (4,5 GeV/u maximal kinetic energy for ions with Z/A = 1/3) and collider consisting of two vertically separated SC rings, which provide average luminosity of the order of 10e27cm2s1 at high energies. Beam cooling systems are proposed for elements of the NICA project. The Booster synchrotron will be equipped with an electron cooling system. Two beam cooling systems – stochastic and electron will be used in the collider rings. Parameters of the cooling systems, proposed scenario of operation and peculiarities of their design intended to achieve required beam parameters are presented in this report.  
slides icon Slides TUYCH01 [3.574 MB]  
 
TUACH01 Status of the High Voltage Electron Cooler Project for NICA Collider 58
 
  • S. Yakovenko, E.V. Ahmanova, A. Ivanov, A.G. Kobets, I.N. Meshkov, A.Yu. Rudakov, A.V. Smirnov, N.D. Topilin
    JINR, Dubna, Moscow Region, Russia
  • A.V. Shabunov
    JINR/VBLHEP, Moscow, Russia
 
  The electron cooling system at electron energy up to 2.5 MeV for the NICA collider is under design at JINR. The magnetic system and system of transfer of capacity on high potential is developed. The high voltage generator prototype on 250 kV was tested. The technical design of the electron cooling system was started.  
slides icon Slides TUACH01 [1.035 MB]  
 
TUPPB005 LEPTA Project: Towards Positronium 316
 
  • A.G. Kobets, E.V. Ahmanova, V.I. Lokhmatov, I.N. Meshkov, V. Pavlov, A.Yu. Rudakov, A.A. Sidorin, S. Yakovenko
    JINR, Dubna, Moscow Region, Russia
  • M.K. Eseev
    NAFU, Arkhangelsk, Russia
 
  The project of the Low Energy Positron Toroidal Accumulator (LEPTA) is under development at JINR. The LEPTA facility is a small positron storage ring equipped with the electron coolin system. The project positron energy is of 2 – 10 keV. The main goal of the facility is to generate an intense flux of positronium atoms – the bound state of electron and positron. Storage ring of LEPTA facility was commissioned in September 2004 and was under development up to now. The positron injector has been constructed in 2005 - 2010, and beam transfer channel – in 2011. By the end of August 2011 experiments on electron and positron injection into the ring have been started. The recent results are presented here.  
 
TUPPB006 Compression and Confinement of Positron Clouds in the Surko Trap of LEPTA Facility 319
 
  • M.K. Eseev, A.N. Vititnev
    NAFU, Arkhangelsk, Russia
  • E.V. Ahmanova, A.G. Kobets, I.N. Meshkov, A.Yu. Rudakov, S. Yakovenko
    JINR, Dubna, Moscow Region, Russia
 
  A bunch of positrons confined in a cylindrical Penning-Malmberg trap can be compressed radially by applying a rotating asymmetric dipolar electric field. An explanation of this effect presented in the report is based on the solutions of particle 3D dynamics equations in the fields of the trap taking into account the positron collisions with a neutral buffer gas. The result agrees well with experimental data obtained at the positron injector of LEPTA facility at JINR. Essential feature of the compression process is resonant character of applied rotating field and coincidence its frequency with the frequency of longitudinal positron bouncing in the trap.  
 
WEPPC044 Positron Annihilation Spectroscopy at LEPTA Facility 532
 
  • P. Horodek, I.N. Meshkov
    JINR/DLNP, Dubna, Moscow region, Russia
  • A.G. Kobets, V.I. Lokhmatov, V. Pavlov, A.Yu. Rudakov, A.A. Sidorin, S. Yakovenko
    JINR, Dubna, Moscow Region, Russia
 
  The Low Energy Positron Toroidal Accumulator (LEPTA) at JINR proposed for generation of positronium in flight can be used for positron annihilation spectroscopy (PAS). The positron injector of the LEPTA facility can generate continuous slow positron beam of the intensity up to 1*107 s−1 at the energy in the range of a few eV to 100 keV and width of the spectrum 1-2 eV. The injector is based on radioactive 22Na isotope. The solid neon is used as moderator to generate monochromatic positron beam. It is known that positrons implanted into the matter can localize the defects of structure as vacancies, clusters of vacancies and pores. Observation of gamma quanta (511 keV) from annihilation process allows to obtain the information about the presence, concentration and kind of defects. Nowadays, the experiments with the use of slow positrons beam instead of standard isotopic sources are more popular. The progress in the creation of Doppler broadening of annihilation gamma line spectrometer will be presented here. In the simplest version, it is a set composed of a HpGe detector, a preampliefier, an ampliefier, a MC analyzer and a PC computer. This combination makes possible the observation of changes in 511 keV gamma line, calculation characteristics for PAS parameters and in effect to deduce about defects concentration and their chemical surrounding.