Paper | Title | Page |
---|---|---|
THAOR03 | Status of the Design and Test of Superconducting Magnets for the NICA Project | 149 |
|
||
NICA is a new accelerator complex being under design and construction at Joint Institute for Nuclear Research in Dubna. The actual design and the main characteristics of superconducting magnets for the NICA booster and the NICA collider are given. The magnets are based on a cold window frame iron yoke and a single-layered superconducting winding made from a hollow NbTi composite superconductor cable cooled with forced two-phase helium flow. The first results of cryogenic tests of the magnets for the NICA project are presented. | ||
![]() |
Slides THAOR03 [0.884 MB] | |
WEZCH03 | Status of the Nuclotron | 117 |
|
||
One of the goals of present Nuclotron development is to test operational modes, diagnostic and beam control equipment required for R&D of the NICA collider elements. Main achievement in this direction are descussed. Results of the last runs of the Nuclotron operation are presented. | ||
![]() |
Slides WEZCH03 [3.582 MB] | |
MOPPA017 | Collider of the NICA Accelerator Complex: Optical Structure and Beam Dynamics | 278 |
|
||
Accelerator complex NICA, developed in VBLHEP JINR, must provide an ion-ion (Au79 +) and ion-proton collisions at energies of 1-4.5 GeV/u, as well as experiments on collisions of polarized proton-proton and deuteron-deuteron beams. The calculations of the optical properties of superconducting collider rings have been aimed to create appropriate conditions for the collisions of beams and obtaining the required luminosity parameters in the working range of energies. The collider characteristics and the beam dynamics have been worked out in most for ion-ion mode of the complex. | ||
TUPPB003 | Progress in NICA Booster Design | 310 |
|
||
New collider facility NICA * is envisioned to be built at The Joint Institute of Nuclear Research. The work presented explores issues of correction system of the Booster Synchrotron. The optimal arrangement of Beam Position Monitors and Orbit Correctors along the ring was investigated in order to achieve decent quality of the orbit correction. The SVD properties of the orbit correction system are presented. Optimal arrangement of the sextupole lenses for the correction of chromaticity of the ring was obtained. The reduction of the dynamical aperture due to the presence of the sextupole lenses was minimized by means of proper choice of betatron phase advances between the lenses.
* Design and construction of Nuclotron-based Ion Collider fAcility (NICA), Conceptual design report, Editors I.Meshkov, A.Sidorin, JINR, Dubna, 2008 |
||
MOBCH01 | Storage, Acceleration and Short Bunched Beam Formation of 197Au+79 Ions in the NICA Collider | 30 |
|
||
The regimes of high intensity beam of 197Au79+ ions in NICA Collider is considered. The first stage – ion storage is proposed to be performed with Barrier Bucket technique at ion energy of 1–3 GeV/u. Experiments in collider mode in this energy range can be performed at injection energy. For experiments at higher, up to 4.5 GeV/u, energy ions are accelerated with the same BB method. Formation of bunched beam is fulfilled in two steps – first, at 24th harmonics and then, final formation, at 72th harmonics of RF system. The possibility of achievement of designed bunch parameters is shown. | ||
![]() |
Slides MOBCH01 [0.807 MB] | |
MOPPA016 | Dynamics of 197Au78+ Ions Generated in Recombination with Cooling Electrons in the NICA Collider | 275 |
|
||
Ions 197Au78+ are generated in recombination of original bare nuclei 197Au79+ with cooling electrons in the electron cooler of the NICA Collider. The ions 197Au78+ dynamics is considered in the in energy range 1–4.5 GeV/u when ion beam is bunched with RF voltage (collision mode operation of the NICA Collider). It is shown that some part of 197Au78+ ions can be involved in synchrotron motion when other part suffers a chaotic motion regime. Most of these ions live in vacuum chamber until further recombination in to the state of 197Au77+ and leave the Collider acceptance very fast. The evolution in time of ion distribution over the Collider aperture is presented. | ||
TUPPB002 | Effect of Gold Nuclei Recombination in Electron Cooling System on Beam Lifetime in the NICA Collider | 307 |
|
||
On the basis of experimental data the production of the ions Au78+ and Au77+ as a result of step-by-step radiative recombination of bare nuclei on free electrons in the NICA Collider electron cooling system is presented. The influence of Au78+ ions on the luminosity lifetime is discussed. The optimum working cycle of the NICA Collider is described. | ||