Paper |
Title |
Page |
WEPPC028 |
High Voltage Terminal in COSY Electron Cooler |
503 |
|
- V.A. Chekavinskiy, E.A. Bekhtenev, I.A. Gusev, M.N. Kondaurov, V.R. Kozak, E.A. Kuper, V.R. Mamkin, A.S. Medvedko, D.N. Pureskin, D.V. Senkov, D.N. Skorobogatov
BINP SB RAS, Novosibirsk, Russia
|
|
|
In Budker INP SBRAS was developed electron cooler with energy up to 2MeV for COSY accelerator (Germany). Due to restricted footprint, cooler's collector and gun parts were combined in a single acceleration system – high voltage terminal. All power and control electronics were placed in a single isolated volume, filled with SF6 gas under 4-6 atm. pressure. Electronics is controlled via wireless CAN, and powered by multistage transformer, capable of 15 kW power at 26 kHz. Wireless control is passed through dedicated optically transparent window, also served for modulated laser beam, used in electron beam diagnostic. By construction, electronics is divided on two standalone units: collector power supply and gun-filter system (SGF). SGF is built on 19" EuroPak chassis, where were placed all power modules, needed for collector and gun pipe electrodes. All power outputs were protected against overvoltage and sparks, available while cooler exploitation. In SGF there were controlled up to 40 parameters altogether. SGF inner power supply provides stable operation in wide range of input voltage, up to ±50% from nominal. Also included in SGF are 2 auxiliary systems, used for beam guiding and beam diagnostics.
|
|
|
WEPPD028 |
Beam Position Monitor System for 2 MeV Electron Cooler for COSY |
608 |
|
- E.A. Bekhtenev, V.P. Cherepanov, G.V. Karpov, V.B. Reva, E. Shubin, D.N. Skorobogatov
BINP SB RAS, Novosibirsk, Russia
|
|
|
The 2 MEV electron cooler for COSY storage ring FZJ is assembling in BINP. Beam position monitor (BPM) system for orbit measurements has been developed and fabricated at BINP. The system contains 2 BPMs inside the cooling section and 10 BPMs in transport channels Continuous electron beam is modulated with a 3 MHz signal for capability to get signals from pickup electrodes. The beam current modulation can be varied in the range of 0.3-1.5 mA. The BPMs inside the cooling section can measure both electron and proton beams. It is achieved by means of switching the reference signals inside the BPM electronics. The BPM electronics provides highly precise beam position measurements. Relative position measurement error doesn’t exceed 1 micron. Design features of the BPM system, its parameters and testing results are presented in this paper.
|
|
|
WEPPD029 |
Fast Tune Measurement System |
611 |
|
- E.A. Bekhtenev, V.P. Cherepanov, G.V. Karpov, A.S. Styuf
BINP SB RAS, Novosibirsk, Russia
|
|
|
Tune measurement system developed in Budker Institute of Nuclear Physics provides fast and accurate measurements of fractional part of betatron tunes in electron-positron storage rings and accelerators. The tune measurements rate can achieve 1 kHz. It is especially important for electron-positron accelerators to have tunes measurement data for each phase of accelerating cycle. The developed system is planed to be installed at the NSLS-II Booster Synchrotron. The system can perform up to 330 measurements during 300 ms time interval of Booster energy ramping. The kicking technique is used as measurement method. The kicks are carried out by a radio frequency (RF) pulses. Each RF pulse contains two frequencies and thus can simultaneously excite the horizontal and vertical betatron oscillations. All signal processing including FFT is performed inside FPGA. The tune measurement accuracy is better than 0.0005. The developed system was put into operation at the February 2011 in VEPP-3 electron-positron storage ring at BINP.
|
|
|