A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Boriskin V.N.

Paper Title Page

 Monitoring Position Of The Electron Beam In The Air 

  • Boriskin V.N., Mitrochenko V.V., Perezhogin S.A., Popenko V.A., Savchenko A.N., Shevchenko V.A.,Tatanov V.I.
    NSC KIPT, Kharkov, Ukraine

A possibility of the operative control position of the electron beam with energy from 20 to 90 MeV, pulse currents up to 1A and operate frequency 50 - 300 Hz at the exit of two-structure electron linac has been investigated. The irradiated samples are situated in ambient air of the linac bunker. Special secondary emission monitors are developed for the operative control of the beam position on the target. The monitor signals are used by linac control system.



 The Electron Accelerator Based on the Secondaryemission Electron Source for Material-Surface Treatment 

  • N.I.Ayzatskiy, A.N.Dovbnya, V.V.Zakutin, V.N.Boriskin, N.G.Reshetnyak, V.P.Romasko, N.A.Dovbnya
    Kharkov Institute of Physics and Technology, Kharkov, Ukraine

The paper reports the results of experimental studies on formation of electron beams in three types of secondary-emission sources. Experiments were carried out with a magnetron gun having a cylindrical anode (70 mm in diameter): 1) with a smooth cathode (40 mm in diameter) and a modified cathode: 2) with 4 longitudinal seams and 3) composed of 8 copper rods (5 mm in diameter). Parameters of beams were studied and beam indentations were obtained. In the first case the beam formation occurs with a current of ~40 A (at a cathode voltage of 40 kV) and an azimuthal uniformity of 5 %. In the second case, at a field nonuniformity of ~30%, the azimuthal nonuniformity is ~15 A. In the third case, at a field nonuniformity of ~60% there occurs formation of 8 separate beams having the form close to the half-ring and with a total current of ~10A (at a cathode voltage of 30 kV). The beam current amplitude stability in all the cases was 2 ... 5 %.



 The Electron Accelerator Based On The Secondary-Emission Electron 

  • N.G.Reshetnyak, A.N.Dovbnya, M.I.Ayzatskiy, V.N.Boriskin, V.V.Zakutin, V.P.Romasko, I.A.Chertishchev, N.A.Dovbnya
    Kharkov Institute of Physics and Technology, Kharkov, Ukraine

The electron accelerator for radiation technology purposes is being created at the NSC KIPT. The accelerator is designed to have a particle energy up to 200 keV and a beam power up to 5 MWt/cm2 at a voltage pulse duration between 8 and 40 mks and a pulse repetition rate up to 10 Hz. A magnetron gun with a cold secondary-emission cathode in cross fields is used as an electron source. Results are reported from the experiments on electron beam production in the magnetron gun (the diameters of the cathode and anode being 40 mm and 78 mm, respectively). The longitudinal magnetic field was measured to range from 1500 to 2300 Oe. In one of the modes of operation, an accelerated electron energy of ~ 100 keV was obtained (beam current 110 A, duration ~ 16 mks), the power density on the target was ~ 4 MW/cm2. Targets made from different materials (stainless steel, aluminum, etc.) were exposed to radiation.