Keyword: framework
Paper Title Other Keywords Page
WEC5 !CHAOS General Status Report controls, luminosity, interface, hardware 17
 
  • A. Stecchi, C. Bisegni, P. Ciuffetti, A. D’Uffizi, A. De Santis, G. Di Pirro, F. Galletti, R. Gargana, A. Michelotti, M. Pistoni, D. Spigone
    INFN/LNF, Frascati, Italy
  • L. Catani
    INFN - Roma Tor Vergata, Roma, Italy
 
  !CHAOS* (Control system based on Highly Abstracted and Open Structure) is now mature and is being employed in real operational contexts. A dedicated infrastructure, recently installed at the LNF Computer Centre, houses the framework and provides control services to different LNF installations. The !CHAOS native capability of fast storage, based on the use of a non-relational database, has been finalized and tested with applications demanding high bandwidth. Thanks to its scalable design, the fast storage allows to accommodate multiple sources with sub-millisecond timing. The EU (Execution Unit) node has also been delivered and turned out to be a "Swiss Army knife" for processing both live and stored data, inserting feedbacks and in general for correlating data acquired by the CU (Control Units) nodes. A key feature of the EU is a plugin mechanism that allows to easily integrate different programming and scripting languages such as LUA, C++, Python, also exploiting the ROOT framework, the well-known scientific tool from CERN. A comprehensive description of the !CHAOS evolution, of its performances and of its use, both in scientific and industrial contexts, is presented.
* L. Catani et al, Phys. Rev. ST Accel. Beams 15, 112804 (2012). Introducing a New Paradigm for Accelerators and Large Experimental Apparatus Control Systems.
 
slides icon Slides WEC5 [6.919 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-PCaPAC2018-WEC5  
About • paper received ※ 10 October 2018       paper accepted ※ 17 October 2018       issue date ※ 21 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP16 CMS ECAL Detector Control System Upgrade Plan for the CERN Large Hadron Collider Long Shutdown II software, detector, interface, controls 69
 
  • R.J. Jiménez Estupinan, D.R.S. Di Calafiori, G. Dissertori, L. Djambazov, W. Lustermann, S. Zelepoukine
    ETH, Zurich, Switzerland
 
  Funding: The authors would like to thank the Swiss National Science Foundation for the financial support.
The Electromagnetic Calorimeter (ECAL) is one of the detectors of the Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC). The ECAL Detector Control System (DCS) software has been implemented using the WinCC Open Architecture (OA) platform. Modifications that require fundamental changes in the architecture are deployed only during the LHC long shutdowns. The upcoming long shutdown (2019-2020) offers a unique opportunity to perform large software updates to achieve a higher modularity, enabling a faster adaptation to changes in the experiment environment. We present the main activities of the ECAL DCS upgrade plan, covering aspects such as the re-organization of the computing infrastructure, the consolidation of integration tools using virtualized environments and the further usage of centralized resources. CMS software toolkits are evaluated from the point of view of the standardization of important parts of the system, such as the machine protection mechanism and graphical user interfaces. Many of the presented features are currently being developed, serving as precursors to the major ECAL upgrade foreseen for the next long shutdown (~2024-2025).
 
poster icon Poster WEP16 [2.607 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-PCaPAC2018-WEP16  
About • paper received ※ 10 October 2018       paper accepted ※ 15 October 2018       issue date ※ 21 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)