A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W  

separation-scheme

Paper Title Other Keywords Page
THPAN072 A Concept for the LHC Luminosity Upgrade Based on Strong Beta* Reduction Combined with a Minimized Geometrical Luminosity Loss Factor luminosity, quadrupole, collimation, dipole 3387
 
  • E. Todesco
  • R. W. Assmann, J.-P. Koutchouk, E. Metral, G. Sterbini, F. Zimmermann, R. de Maria
    CERN, Geneva
  A significant increase of the LHC beam current touches physics limits as collective effects, electron-cloud, heat load, collimation and machine protection. We propose an upgrade scheme mainly based on a stronger focusing, with a beta* of 10 cm, requiring a triplet quadrupole aperture of around 130 mm. The performance is further improved if the triplet is based on the Nb3Sn technology. In the present baseline, this beta* reduction provides a negligible luminosity increase: this approach requires a drastic action to minimize the crossing angle, while the beam separation at the long-range encounters has to be increased. This is provided by an early separation scheme made of small dipoles inside the detectors. Optionally, a small angle crab cavity scheme may totally suppress the residual crossing angle. The quadrupole aperture is calculated to allow a larger gap for the collimator, suppressing their impedance limitation. This concept offers high performance while significantly reducing the risks associated to a beam current increase; it opens as well new issues that deserve further studies, such as the dipole integration in the detector, and the correction of the triplet aberrations.