Paper | Title | Other Keywords | Page | ||
---|---|---|---|---|---|
WEPMS055 | SQUID-based Nondestructive Testing Instrument of Dished Niobium Sheets for SRF Cavities | pick-up, superconducting-RF, controls, superconductivity | 2469 | ||
|
Funding: Acknowledgment: This work is supported by DOE grant DE-FG02-05ER84241 |
Currently available technology can only inspect flat sheets and allow the elimination of defective flat sheets before the expensive forming and machining of the SRF cavity half-cells, but it does not eliminate the problem of remaining or uncovered surface impurities after partial chemical etching of the half-cells, nor does it detect any defects that may have been added during the fabrication of the half-cells. AMAC has developed a SQUID scanning system based on eddy current technique that allows the scanning of curved Nb samples that are welded to make superconducting RF cavity half-cells. AMAC SQUID scanning system successfully located the defects (Ta macro particles about 100 mm diameter) in a flat Nb sample (top side) and was able to also locate the defects in a cylindrical surface sample (top side). It is more significant that the system successfully located the defects on the backside of the flat sample and curved sample or 3-mm from the top surface. The 3-D SQUID-based Nondestructive instrument will be further optimized and improved in making SRF cavities and allow inspection and detection during cavity manufacturing for achieving highest accelarating fields. |
|