Paper | Title | Page |
---|---|---|
FRXAB01 | Status of High Polarization DC High Voltage GaAs Photoguns | 3756 |
|
||
This talk will review the state of the art of high polarization GaAs photoguns used worldwide. Subject matter will include drive laser technology, photocathode material, gun design, vacuum requirements and photocathode lifetime as a function of beam current. Recent results have demonstrated high current, 85% polarized beams with high reliability and long lifetime under operational conditions. Research initiatives for ensuring production of high average and peak current beams for future accelerator facilities such as ELIC and the ILC will be also discussed. | ||
|
Slides | |
FRXAB02 | Review of Laser Driven Sources for Multi-charged Ions | 3761 |
|
||
Funding: This work was supported by the U. S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC-02-06CH11357 Laser beams have been widely used in the accelerator field for various applications. Here, we focus on ion beam production usage as an ion source. The laser ion source (LIS) already has about thirty years history and was developed for providing pulsed beam to synchrotrons. Since 2000 we have concentrated on the use of the high brightness of induced laser plasma to provide intense highly charged ions efficiently. To take advantage of the intrinsic density of the plasma, Direct Plasma Injection Scheme (DPIS) has been developed. The induced laser plasma has initial expanding velocity and can be delivered directly to the RFQ. The presentation will discuss general features of the laser ion sources and advantages of the DPIS. |
||
|
Slides | |
FRXAB03 | Design, Construction and Commissioning of the SuSI ECR | 3766 |
|
||
Funding: This work was supported by the National Science Foundation under grant PHY-0110253. An ECR ion source was constructed at the NSCL/MSU to replace the existing SC-ECRIS. This ECRIS operates at 18+14.5 GHz microwave frequencies and it is planned an upgrade to 24-28 GHz in the second phase of commissioning. A superconducting hexapole coil produces the radial magnetic field; the axial trapping is produced with six superconducting solenoids enclosed in an iron yoke to allow tuning the distance between the plasma electrode and resonant zone in the plasma. The plasma chamber of the ion source can be biased at +30 kV, the beam line at -30 kV. The voltage of the beam line vacuum pipe must be kept constant from the ECRIS to the point of full separation of the beam charge states near the image plane of the analyzing magnet. At this point, an insulator is used to increase the voltage up to zero value. The kinetic energy of the beam is decreased to 30 kV per unit charge after this point, as required for the injection in the Coupled Cyclotron Facility. To decrease the beam divergence, a focusing solenoid is installed after the vacuum pipe break. We report the details of the design, construction and initial commissioning results of this new ECIS. |
||
|
Slides |