A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Tobiyama, M.

Paper Title Page
MOPC008 Dynamic Beam-Beam Effects Measured at KEKB 606
 
  • T. Ieiri, Y. Funakoshi, T. Kawamoto, M. Masuzawa, M. Tobiyama
    KEK, Ibaraki
 
  Funding: This work is partially supported by Grant-in-Aid Scientific Research (16540271) from Japan Society for the Promotion of Science and Technology.

KEKB is a multi-bunch, high-current, electron/positron collider for B meson physics. The two beams collide at one interaction point (IP) with a finite horizontal crossing angle and with a bunch-space of 6 to 8 ns. The luminosity achieved at KEKB is the best in the world. The betatron tunes are set close to a half integer, to expect the dynamic beam-beam effects that change the beta function around the rings and the emittance as a function of the beam-beam parameter. In order to investigate such attractive beam-beam effects, the beam-beam kick and the beam-beam tune-shift were obtained by comparing the beam parameters between a colliding bunch and a non-colliding one. The horizontal beam size at the IP estimated from a beam-beam kick curve was slightly less than a calculated value without the dynamic effect. The horizontal emittance estimated from the beam-beam tune shift was somewhat larger than a calculated natural emittance. These experimental results reflect the dynamic beam-beam effects.

 
TPAT051 Asymmetrical Spectrum Observed at the KEKB High Energy Electron Ring 3176
 
  • T. Ieiri, Y. Ohnishi, M. Tobiyama
    KEK, Ibaraki
 
  KEKB is a multi-bunch, high-current, electron/positron collider for B meson physics. The two beams collide at one interaction point (IP) with a finite horizontal crossing angle. The luminosity achieved at KEKB is the best in the world. In order to keep up the performance, the tune of a non-colliding bunch, placed just after a colliding bunch-train, is continuously monitored. It was observed that an electron bunch showed an asymmetrical distribution biased to a higher tune in the vertical tune-spectrum. We found that the asymmetrical spectrum was reinforced by the beam-beam interaction, though the electron bunch did not collide. The asymmetry was reinforced moreover, as the electron bunch approached a bunch-train further. These observations suggest that the asymmetry in the spectrum is not related to trapped-ions or fast-ions observed in an electron single beam, but related to ions produced by the beam-beam interaction, which makes the particles scattered and they might yield new ions due to the collision with residual gas. We can imagine that the ions are accumulated along a bunch-train and some ions survive after colliding bunches passed through in the electron ring. A quantitative analysis remains for future study.  
TPPP007 Recent Progress at KEKB 1045
 
  • Y. Funakoshi, K. Akai, K. Ebihara, K. Egawa, A. Enomoto, J.W. Flanagan, H. Fukuma, K.  Furukawa, T. Furuya, J. Haba, S. Hiramatsu, T. Ieiri, N. Iida, H. Ikeda, T. Kageyama, S. Kamada, T. Kamitani, S. Kato, M. Kikuchi, E. Kikutani, H. Koiso, M. Masuzawa, T. Mimashi, A. Morita, T.T. Nakamura, H. Nakayama, Y. Ogawa, K. Ohmi, Y. Ohnishi, N. Ohuchi, K. Oide, M. Ono, M. Shimada, S. Stanic, M. Suetake, Y. Suetsugu, T. Sugimura, T. Suwada, M. Tawada, M. Tejima, M. Tobiyama, N. Tokuda, S. Uehara, S. Uno, N. Yamamoto, Y. Yamamoto, Y. Yano, K. Yokoyama, M. Yoshida, M. Yoshida, S.I. Yoshimoto
    KEK, Ibaraki
  • F. Zimmermann
    CERN, Geneva
 
  We summarize the machine operation of KEKB during past one year. Progress for this period, causes of present performance limitations and future prospects are described.  
RPAT053 Movement of BPMs Due to Thermal Stress in KEKB 3253
 
  • M. Tejima, A. Arinaga, H. Fukuma, S. Hiramatsu, T. Ieiri, I. Ishii, M. Tobiyama
    KEK, Ibaraki
 
  Movement of Beam Position Monitors (BPM) due to thermal stress in high beam current operation is observed in KEKB. For high luminosity operation of KEKB, the beam current as high as 1.6A is accumulated in the positron ring and a precise control of the beam orbit based on the BPM system is required. Though the every BPM chamber is fixed firmly on a support of each quadrupole magnet, the BPM chamber moves several hundred microns from the setting position depending on the beam current due to beam pipe heating by strong synchrotron light irradiation. Such movement introduces an unavoidable offset error in the BPM measurement, and is a serious problem not only for KEKB but also for the next generation of B-factory operated with extremely high beam current. We report the measurement of the movement by distance sensors and an attempt to correct the BPM offset error in real-time operation.  
ROPB009 Betatron Sidebands Due to Electron Clouds Under Colliding Beam Conditions 680
 
  • J.W. Flanagan, H. Fukuma, Y. Funakoshi, S. Hiramatsu, H. Ikeda, K. Ohmi, M. Tobiyama, S. Uehara, S. Uno
    KEK, Ibaraki
  • E. Perevedentsev
    BINP SB RAS, Novosibirsk
 
  Recently, we have observed vertical betatron sidebands in the transverse beam spectra of positron bunches at the KEKB LER which are associated with the presence of electron clouds. When the LER is operating in single-beam mode (no colliding bunches in the HER), these sidebands are sharply peaked. When the bunches are in collision for physics running, the sidebands are still present but are found to be smeared out. The bunch-by-bunch specific luminosity is lower for bunches with sidebands than for those without sidebands. In this paper, the behavior of the sidebands in collision and the effects on luminosity are discussed.  
FPAP004 Simulation Analysis of Head-Tail Motion Caused by Electron Cloud 907
 
  • K. Ohmi, J.W. Flanagan, H. Fukuma, S. Hiramatsu, H. Ikeda, M. Tobiyama
    KEK, Ibaraki
  • E. Perevedentsev
    BINP SB RAS, Novosibirsk
 
  Synchro-beta side band caused by electron cloud instability has been observed at KEK-B factory. The side-band appears between $νβ+νs$ and $νβ+2νs$ above the threshold of beam size blow up and disappear by applying solenoid field. The side-band is an evidence of strong head-tail instability caused by electron cloud. The side-band is characterized by positive shift, $+1-2νs$, while general strong head-tail instabilities give frequency with negative shift $νbeta-ν_s$. We study the synchro-beta spectrum using a code, PEHTS, which simulates single bunch electron cloud instability.  
FPAP005 Coupled Bunch Instability Caused by Electron Cloud 943
 
  • M. Tobiyama, J.W. Flanagan, H. Fukuma, S.-I. Kurokawa, K. Ohmi, S.S. Win
    KEK, Ibaraki
 
  Coupled bunch instability caused by electron cloud has been observed in some positron storage ring. We discuss the mode spectrum of the coupled bunch instability due to electrons moving in drift space, weak solenoid field and strong bending field. The mode spectrum of the instability is reflected by the electron motion: that is, we understand global characteristics of elecron motion from the mode spectrum.  
RPAT077 Beam Test Proposal of an ODR Beam Size Monitor at the SLAC FFTB 4015
 
  • Y. Fukui, D. Cline, F. Zhou
    UCLA, Los Angeles, California
  • A. Aryshev, V. Karataev, T. Muto, M. Tobiyama, J.U. Urakawa
    KEK, Ibaraki
  • P.R. Bolton, M.C. Ross
    SLAC, Menlo Park, California
  • R. Hamatsu
    TMU, Hatioji-shi,Tokyo
  • G.A. Naumenko, A. Potylitsyn, A. Sharafutdinov
    Tomsk Polytechnic University, Physical-Technical Department, Tomsk
 
  We design a single bunch transverse beam size monitor which will be tested to measure the 29 GeV electron/positron beam at the SLAC FFTB beam line.The beam size monitor uses a CCD camera to make images of the interference pattern of the optical diffraction radiation from conductive slit target which are placed close to the beam path. In this method, destruction of the accelerated electron/positron beam bunches due to the beam size monitoring is negligible, which is vital to the operation of the Linear Collider project. A dis-phased conductive slit target and a lens system allow us to recover the sensitivity of the transverse beam size with a small photon yield ratio at the valley to that at the peak due to the large gamma*λ, and with the near field effect due to the large λ*gamma**2. A solution for non-negligible divergence at the SLAC FFTB is also discussed.