A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kobayashi, T.

Paper Title Page
TOAA006 Development of Superconducting Combined Function Magnets for the Proton Transport Line for the J-PARC Neutrino Experiments 495
 
  • T. Nakamoto, Y. Ajima, Y. Fukui, N. Higashi, A. Ichikawa, N. Kimura, T. Kobayashi, Y. Makida, T. Ogitsu, H. Ohhata, T. Okamura, K. Sasaki, M. Takasaki, K. Tanaka, A. Terashima, T. Tomaru, A. Yamamoto
    KEK, Ibaraki
  • M. Anerella, J. Escallier, G. Ganetis, R.C. Gupta, M. Harrison, A.K. Jain, J.F. Muratore, B. Parker, P. Wanderer
    BNL, Upton, Long Island, New York
  • T. Fujii, E. Hashiguchi, T. Kanahara, T. Orikasa
    Toshiba, Yokohama
  • Y. Iwamoto
    JAERI, Ibaraki-ken
  • T. Obana
    GUAS/AS, Ibaraki
 
  A second generation of long-baseline neutrino oscillation experiments has been proposed as one of the main projects at J-PARC jointly built by JAERI and KEK. Superconducting combined function magnets, SCFMs, will be utilized for the 50 GeV, 750 kW proton beam line for the neutrino experiment and an R&D program is in underway at KEK. The magnet is designed to provide a combined function of a dipole field of 2.6 T with a quadrupole field of 19 T/m in a coil aperture of 173.4 mm. A series of 28 magnets in the beam line will be operated DC in supercritical helium cooling below 5 K. A design feature of the SCFM is the left-right asymmetry of the coil cross section: current distributions for superimposed dipole- and quadrupole- fields are combined in a single layer coil. Another design feature is the adoption of glass-fiber reinforced phenolic plastic spacers to replace the conventional metallic collars. To evaluate this unique design, fabrication of full-scale prototype magnets is in progress at KEK and the first prototype will be tested at cold soon. This paper will report the development of the SCFMs.  
FPAE063 Enhancements of Machine Reliability and Beam Quality in SPring-8 Linac for Top-Up Injection into Two Storage Rings 3585
 
  • H. Hanaki, T. Asaka, H. Dewa, T. Kobayashi, A. Mizuno, S. Suzuki, T. Taniuchi, H. Tomizawa, K. Yanagida
    JASRI/SPring-8, Hyogo
 
  SPring-8 has started its top-up operation from May 2004 in order to feed constant photon fluxes to users. The SPring-8 linac has been improved to realize stable and uninterrupted top-up injection into the SPring-8 storage ring and the NewSUBARU storage ring. The beam energy instability of 0.01% rms had been achieved by the following stabilization: RF amplitude and phase stabilization, synchronization of beam timing and linac's 2856 MHz RF and introduction of an energy compensation system (ECS). Feedback controls of steering magnets compensate long-term variation of beam trajectories at ends of beam transport lines. The presentation will include also recent improvements.