A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Dovbnya, A.

Paper Title Page
TPPE050 Beam Injection in Recirculator SALO 3109
 
  • I.S. Guk, A. Dovbnya, S.G. Kononenko, F.A. Peev, A.S. Tarasenko
    NSC/KIPT, Kharkov
  • J.I.M. Botman, M.J. Van der Wiel
    TUE, Eindhoven
 
  Possible antetypes of injectors for electron recirculator SALO,* intended for nuclear-physical research, are analyzed. The plan injection of beams in recirculator is offered. Expected parameters of beams are designed.

*I.S. Guk, A.N. Dovbnya, S.G. Kononenko, A.S. Tarasenko, M. van der Wiel, J.I.M. Botman, NSC KIPT accelerator on nuclear and high energy physics, Proceedings of EPAC 2004, Lucerne, Switzerland, p. 761-764.

 
TPPE052 Characteristics of Electron Beam Produced by Magnetron Diode with a Secondary-Emission Cathode 3197
 
  • N.G. Reshetnyak, N. Aizatsky, A. Dovbnya, N.A. Dovbnya, V.V. Mytrochenko, V. Zakutin
    NSC/KIPT, Kharkov
 
  The beam parameters were investigated using an azimuth-sectionalized 8-channel Faraday cup and a 12-channel computer-aided measuring system. The magnetron diode had a cathode (40 mm in diameter) and a 15 mm anode-cathode gap. At a cathode voltage amplitude of 50 kV and a cathode magnetic field of ~1200 Oe, the diode generates a tubular electron beam with an outer diameter of 50 mm, an inner diameter of 44 mm, a beam current of ~50 A. The short time instability of the total beam current, and of the current from each of eight segments of the Faraday cup was estimated to be ~2 … 3%, and long time instability (3 hours) was 5…7 %. Azimuthal distribution of beam current was investigated versus the amplitude, distribution and direction of the magnetic field. At a cathode magnetic field of 1200 Oe, that falls off inhomogeneity in the vicinity of the Faraday cup down to ~800 Oe, the azimuthal beam current distribution has a ± (3 … 5)%. As the magnetic field strength increases up to ~1700 Oe in the region of beam emergence from the gun and the Faraday cup, the azimuthal inhomogeneity of the beam current increases up to ± (100 … 150)%.  
WPAP028 Modes of Electron Beam Generation in a Magnetron Diode with a Secondary-Emission Cathode 2027
 
  • V. Zakutin, A. Dovbnya, N.G. Reshetnyak
    NSC/KIPT, Kharkov
 
  Experiments have shown that the electron current direction can be varied along the diode axis or perpendicular to the axis, depending on the longitudinal magnetic field amplitude and distribution. The diode had a copper cathode diameter 40 mm and 15 mm anode-cathode gap. Several modes of electron beam generation are realized, namely, open, closed, and intermediate. In the first case, at a cathode magnetic field of ~ 1200 Oe, that falls off approaching the diode output down, and at a cathode voltage of 50 kV, the diode generates a tubular electron beam of a current 50 A and the anode current was about 1 % of the beam current. In the second case, the electron current was going to the anode, the secondary-emission multiplication of electrons being retained. At a cathode voltage of ~ 45 kV, the anode current was ~ 5 A, and the beam current was practically absent. This was attained by decreasing the magnetic field to ~ 1.1…1.2 of the Hell field value and by increasing the magnetic field towards the diode output. In the intermediate mode with a cathode voltage of ~ 45 kV the direct beam current measured was ~ 5 A, and the anode current was ~ 7 A.  
RPAP034 Use Recirculator "SALO" in the Mode of the Neutron Source 2354
 
  • I.S. Guk, A. Dovbnya, S.G. Kononenko, F.A. Peev, A.S. Tarasenko
    NSC/KIPT, Kharkov
  • J.I.M. Botman, M.J. Van der Wiel
    TUE, Eindhoven
 
  The opportunity of use developed in NSC KIPT recirculator SALO* with superconducting accelerating structure TESLA for reception of intensive neutron streams surveyed. As an injector it is supposed to use RF-gun with superconducting accelerating structure. An electron beam with the peak energy 130 ??? is transported on a target located apart of 100 m from recirculator. System of the focusing are designed allowing to gain on a target the required density of a beam. Tolerances on precision of an alignment of magnetooptical devices are calculated.

*I. S. Guk, A. N. Dovbnya, S. G. Kononenko, A. S. Tarasenko, M. van der Wiel, J. I. M. Botman, NSC KIPT Accelerator on Nuclear and High Energy Physics, Proceedings of EPAC 2004, Lucerne, Switzerland, p.761-764.

 
FPAE062 Beam Parameters of a Two-Sectional Electron Linac with the Injector Based on a Resonance System with Evanescent Oscillations 3567
 
  • V.V. Mytrochenko, M.I. Ayzatskiy, V.N. Boriskin, A. Dovbnya, I.V. Khodak, V.A. Kushnir, A. Opanasenko, S.A. Perezhogin, A.N. Savchenko, D.L. Stepin, V.I. Tatanov, Z.V. Zhiglo
    NSC/KIPT, Kharkov
 
  The S-band electron linac has been designed at NSC KIPT to cover an energy range from 30 to about of 100 MeV. The linac consists of a couple of the four-meter long piecewise homogeneous accelerating sections. Each section is supplied with RF power from a separate klystron. The peculiarity of the linac is using of the injector based on evanescent oscillations. The report presents both simulation results of self-consistent particle dynamics in the linac and results of measurement of beam parameters.