A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Babzien, M.

Paper Title Page
TPAE057 A Multibunch Plasma Wakefield Accelerator 3384
 
  • E.K. Kallos, T.C. Katsouleas, P. Muggli
    USC, Los Angeles, California
  • M. Babzien, I. Ben-Zvi, K. Kusche, P.I. Pavlishin, I. Pogorelsky, V. Yakimenko
    BNL, Upton, Long Island, New York
  • W.D. Kimura
    STI, Washington
  • F. Zhou
    UCLA, Los Angeles, California
 
  We investigate a plasma wakefield acceleration scheme where a train of electron microbunches feeds into a high density plasma. When the microbunch train enters such a plasma that has a corresponding plasma wavelength equal to the microbunch separation distance, a strong wakefield is expected to be resonantly driven to an amplitude that is at least one order of magnitude higher than that using an unbunched beam. PIC simulations have been performed using the beamline parameters of the Brookhaven National Laboratory Accelerator Test Facility operating in the configuration of the STELLA inverse free electron laser (IFEL) experiment. A 65 MeV electron beam is modulated by a 10.6 um CO2 laser beam via an IFEL interaction. This produces a train of ~90 microbunches separated by the laser wavelength. In this paper, we present both a simple theoretical treatment and simulation results that demonstrate promising results for the multibunch technique as a plasma-based accelerator.  
TPAE063 Observation of Superposition of Wake Fields Generated by Electron Bunches in a Dielectric-Lined Waveguide 3609
 
  • S.V. Shchelkunov, T.C. Marshall
    Columbia University, New York
  • M. Babzien
    BNL, Upton, Long Island, New York
  • J.L. Hirshfield, M.A. LaPointe
    Yale University, Physics Department, New Haven, CT
 
  Funding: Research supported by the Department of Energy, Division of High Energy Physics.

We report results from an experiment, done at the Accelerator Test Facility, Brookhaven National Laboratory, which demonstrates the successful superposition of wake fields excited by 50MeV bunches which travel ~50cm along the axis of a cylindrical waveguide which is lined with alumina. Wake fields from two short (5-6psec) 0.15-0.35nC bunches are superimposed and the energy losses of each bunch are measured as the separation between the bunches is varied so as to encompass approximately one wake field period (~21cm). A spectrum of 40 TM0m eigenmodes is excited by the bunch. A substantial retarding wake field (2.65MV/m×nC for just the first bunch) is developed because of the short bunches and the narrow vacuum channel diameter (3mm) through which they move. The energy loss of the second bunch exhibits a narrow resonance with a 4mm (13.5psec) footprint. This experiment may be compared with a related experiment reported by a group at the Argonne National Laboratory where a much weaker wake field (~0.1MV/m×nC for the first bunch) having ~10 eigenmodes was excited by a train of much longer bunches,* and the bunch spacing was not varied.

*J. G. Power, M. E. Conde, W. Gai, R. Konecny, and P. Schoessow, Phys. Rev. ST Accel. Beams 3, 101302 (2000).

 
TPAT034 Manipulations of Double Electron Beams within One RF Period for Seeded SM-LWFA Experiment 2312
 
  • F. Zhou, D. Cline
    UCLA, Los Angeles, California
  • M. Babzien, V. Yakimenko
    BNL, Upton, Long Island, New York
  • W.D. Kimura
    STI, Washington
 
  Funding: Work supported by U.S. DOE.

Although seeded SM-LWFA only requires one electron beam to initiate the laser wakefield, it would be highly desirable to have a second electron beam traveling after the first one to probe the accelerated electrons. To create and preserve significant amount of wakefield in the STELLA SM-LWFA experiment, the first e-beam needs to be tiny (<40 microns FWHM) in size and short in length within the plasma. To probe the wakefield which is damped within 10 ps for certain plasma density, the separation between the first and second beams needs to be within one RF period and the second e-beam must have smaller energy spread and smaller size. Design of double beams in one RF period to meet the strict requirements and the preliminary beam study at BNL-ATF facility are presented. The scheme of double beams with ATF bunch compressor is also discussed.

 
RPAT067 Beam Angle Measurement Using Cherenkov Radiation 3742
 
  • T. Watanabe, M. Babzien, K. Kusche, V. Yakimenko
    BNL, Upton, Long Island, New York
 
  A simple beam angle monitor utilizing observation of far-field Cherenkov radiation is being developed. The monitor is independent of beam energy as well as position and requires only modest camera sensitivity. Since the wavefront of Cherenkov radiation is not spherical but planar, the far-field image is supposed to be infinetesimally small in one-dimensional geometrical optics, which may result in high angular resolution. In a practical experiment, however, beam scattering in a radiator and diffraction from a finite size radiation source determine the resolution. Numerical analysis shows that the angular resolution with a 100-um thickness fused silica radiator is 0.8 mrad. The experimental results with 2-mm and 100-um thickness fused silica are shown. The possibility of non-destructive measurement is also discussed.  
RPPT031 Recent Results from and Future Plans for the VISA II SASE FEL 2167
 
  • G. Andonian, R.B. Agustsson, P. Frigola, A.Y. Murokh, C. Pellegrini, S. Reiche, J.B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
  • M. Babzien, I. Ben-Zvi, V. Litvinenko, V. Yakimenko
    BNL, Upton, Long Island, New York
  • I. Boscolo, S. Cialdi, A.F. Flacco
    INFN-Milano, Milano
  • M. Ferrario, L. Palumbo, C. Vicario
    INFN/LNF, Frascati (Roma)
  • J.Y. Huang
    PAL, Pohang, Kyungbuk
 
  As the promise of X-ray Free Electron Lasers (FEL) comes close to realization, the creation and diagnosis of ultra-short pulses is of great relevance in the SASE FEL (Self-Amplified Spontaneous Emission) community. The VISA II (Visible to Infrared SASE Amplifier) experiment entails the use of a chirped electron beam to drive a high gain SASE FEL at the Accelerator Test Facility (ATF) in Brookhaven National Labs (BNL). The resulting ultra-short pulses will be diagnosed using an advanced FROG (Frequency Resolved Optical Gating) technique, as well as a double differential spectrum (angle/wavelength) diagnostic. Implementation of sextupole corrections to the longitudinal aberrations affecting the high energy-spread chirped beam during transport to the VISA undulator is studied. Start-to-end simulations, including radiation diagnostics, are discussed. Initial experimental results involving a highly chirped beam transported without sextupole correction, the resulting high gain lasing, and computational analysis are briefly reported.