A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Adolphsen, C.

Paper Title Page
TPPT044 Beam Position Monitoring Using the HOM-Signals from a Damped and Detuned Accelerating Structure 2804
 
  • S. Doebert, C. Adolphsen, R.M. Jones, J.R. Lewandowski, Z. Li, M.T.F. Pivi, J.W. Wang
    SLAC, Menlo Park, California
  • T. Higo
    KEK, Ibaraki
 
  Funding: Work Supported by DOE Contract DE-AC02-76F00515.

The Next Linear Collider (NLC) and Global Linear Collider (GLC) designs require precision beam-to-accelerator-structure alignment to reduce the effect of short range wakefields. For this purpose, the HOM signals from the structure dipole mode damping ports would be used to determine the beam position in the structure, and then the structures would be moved remotely to center them about the beam (a 5 micron rms alignment is required). In 2000, a test of a 1.8 m prototype structure in the ASSET facility at SLAC achieved 11 micron rms centering accuracy, which was limited by systematic effects caused by beam jitter. This year, such measurements were repeated for a pair of shorter structures (60 cm) that were developed to improve high gradient performance. In addition, the beam position resolution was determined by measuring simultaneously three signal frequencies (14.3, 15, 15.7 GHz) corresponding to modes localized at the beginning, the middle and the end of the structures. In this paper, we present results from the beam centering and position resolution measurements.

 
TOPE002 Advances in Normal Conducting Accelerator Technology from the X-Band Linear Collider Program 204
 
  • C. Adolphsen
    SLAC, Menlo Park, California
 
  In the early 1990's, groups at SLAC and KEK began dedicated development of X-band (11.4 GHz) rf technology for a next generation, TeV-scale linear collider. The choice of a relatively high frequency, four times that of the SLAC 50 GeV Linac, was motivated by the cost benefits of having lower rf energy per pulse (hence fewer rf components) and reasonable efficiencies at high gradients (hence shorter linacs). However, to realize such savings requires operation at gradients and peak powers much higher than that hitherto achieved. During the past 15 years, these challenges were met through innovations on several fronts, and resulted in a viable rf system design for a linear collider. This paper reviews these achievements, which include developments in the generation and transport of high power rf, and new insights into high gradient limitations.  
ROAC004 High Gradient Performance of NLC/GLC X-Band Accelerating Structures 372
 
  • S. Doebert, C. Adolphsen, G.B. Bowden, D.L. Burke, J. Chan, V.A. Dolgashev, J.C. Frisch, R.K. Jobe, R.M. Jones, R.E. Kirby, J.R. Lewandowski, Z. Li, D.J. McCormick, R.H. Miller, C.D. Nantista, J. Nelson, C. Pearson, M.C. Ross, D.C. Schultz, T.J. Smith, S.G. Tantawi, J.W. Wang
    SLAC, Menlo Park, California
  • T.T. Arkan, C. Boffo, H. Carter, I.G. Gonin, T.K. Khabiboulline, S.C. Mishra, G. Romanov, N. Solyak
    Fermilab, Batavia, Illinois
  • Y. Funahashi, H. Hayano, N. Higashi, Y. Higashi, T. Higo, H. Kawamata, T. Kume, Y. Morozumi, K. Takata, T. T. Takatomi, N. Toge, K. Ueno, Y. Watanabe
    KEK, Ibaraki
 
  Funding: Work Supported by DOE Contract DE-AC02-76F00515.

During the past five years, there has been an concerted effort at FNAL, KEK and SLAC to develop accelerator structures that meet the high gradient performance requirements for the Next Linear Collider (NLC) and Global Linear Collider (GLC) initiatives. The structure that resulted is a 60-cm-long, traveling-wave design with low group velocity (< 4% c) and a 150 degree phase advance per cell. It has an average iris size that produces an acceptable short-range wakefield in the linacs, and dipole mode damping and detuning that adequately suppresses the long-range wakefield. More than eight such structures have operated over 1000 hours at a 60 Hz pulse rate at the design gradient (65 MV/m) and pulse length (400 ns), and have reached breakdown rate levels below the limit for the linear collider. Moreover, the structures are robust in that the breakdown rates continue to decrease over time, and if the structures are briefly exposed to air, the rates recover to their low values within a few days. This paper presents a final summary of the results from this program, which effectively ended last August with the selection of ‘cold’ technology for a next generation linear collider.

 
RPPP044 Studies of Room Temperature Accelerator Structures for the ILC Positron Source 2827
 
  • J.W. Wang, C. Adolphsen, V. Bharadwaj, G.B. Bowden, V.A. Dolgashev, R.M. Jones, E.N. Jongewaard, J.R. Lewandowski, Z. Li, R.H. Miller
    SLAC, Menlo Park, California
 
  Funding: Work supported by U.S. Department of Energy, contract DE-AC02-76F00515.

There are many challenges in the design of the normal-conducting portion of ILC positron injector system such as achieving adequate cooling with the high rf and particle loss heating, and sustaining high accelerator gradients during millisecond-long pulses in a strong magnetic field. The proposed design for the positron injector contains both standing-wave and traveling-wave L-band accelerator structures for high RF efficiency, low cost and ease of fabrication. This paper presents results from studies of particle energy deposition for both undulator based and conventional positron sources, cooling system design, accelerator structure optimization, RF pulse heating, cavity frequency stabilization, and RF feed system design.