Paper | Title | Page |
---|---|---|
MOA3IO01 | High Energy Coulomb Scattered Electrons Detected in Air Used as the Main Beam Overlap Diagnostics for Tuning the RHIC Electron Lenses | 20 |
|
||
Funding: Work supported by Brookhaven Science Associates under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy A new type of electron-ion beam overlap monitor has been developed for the RHIC electron lenses. Low energy electrons acquire high energies in small impact parameter Coulomb scattering collisions with relativistic ions. Such electrons can traverse thin vacuum windows and be conveniently detected in air. Counting rates are maximized to optimize beam overlap. Operational experience with the electron backscattering detectors during the 2015 p-p RHIC run will be presented. Other possible real-time non-invasive beam-diagnostic applications of high energy Coulomb-scattered electrons will be briefly discussed. Most of this material appears in an article by the same authors entitled "High energy Coulomb-scattered electrons for relativistic particle beam diagnostics", Phys. Rev. Accel. Beams 19, 041002 (2016) |
||
![]() |
Slides MOA3IO01 [2.164 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOA3IO01 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOB3CO03 | RHIC Au-Au Operation at 100 GeV in Run16 | 42 |
|
||
In order to achieve higher instantaneous and integrated luminosities, the average Au bunch intensity in RHIC has been increased by 30% compared to the preceding Au run. This increase was accomplished by merging bunches in the RHIC injector AGS. Luminosity leveling for one of the two interaction points (IP) with collisions was realized by continuous control of the vertical beam separation. Parallel to RHIC physics operation, the electron beam commissioning of a novel cooling technique with potential application in eRHIC, Coherent electron Cooling as a proof of principle (CeCPoP), was carried out. In addition, a 56 MHz superconducting RF cavity was commissioned and made operational. In this paper we will focus on the RHIC performance during the 2016 Au-Au run. | ||
![]() |
Slides MOB3CO03 [2.173 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOB3CO03 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOB62 | Absolute Energy Measurement of the LEReC Electron Beam | 1033 |
|
||
The goal of future operation of the low energy RHIC Electron Cooling (LEReC) accelerator is to cool the RHIC ion beams. To provide successful cooling, the velocities of the RHIC ion beam and the LEReC electron beam must be matched with 10-4 accuracy. While the energy of ions will be known with the required accuracy, the e-beam energy can have an initial offset as large as 5%. The final setting of the e-beam energy will be performed by observing either the Schottky spectrum of debunched ions co-traveling with the e-beam or the recombination signal. Yet, to start observing such signals one has to set the absolute energy of the electron beam with an accuracy better than 10-2, preferably better than 5·10-3. In this paper we discuss how such accuracy can be reached by utilizing the LEReC 180 degree bend as a spectrometer. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB62 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |