Author: Sonnad, K.G.
Paper Title Page
THPOA07 Probablistic Estimation of Low Energy Electron Trapping in Quadrupoles 1112
 
  • K.G. Sonnad
    KEK, Ibaraki, Japan
  • J.A. Crittenden, K.G. Sonnad
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Electron cloud formation in quadrupoles is important for storage rings because they have the potential of being trapped for a time period that exceeds the revolution period of the beam. This can result in a turn by turn build up of cloud, that could potentially interfere with beam motion. The mechanism of electron trapping can be understood based on dynamics associated with the motion of an isolated charged particle in a magnetic field. In such a system, energy is conserved and so is the magnetic moment of the gyrating electron which is an adiabatic invariant. This leads to determination of a so called loss cone in velocity space. Using these principles we describe a method to estimate the probability distribution of trapping across the cross-section of a quadrupole for a given field gradient and electron energy. Such an estimate can serve as a precursor to more detailed numerical studies of electron cloud build and trapping in quadrupoles.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA07  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)