Paper | Title | Page |
---|---|---|
TUPOA47 | Development of Short Undulators for Electron-Beam-Radiation Interaction Studies | 380 |
|
||
Funding: Work supported by the US DOE contract DE-SC0013761 with Northern Illinois University Interaction of an electron beam with external field or its own radiation has widespread applications ranging from coherent radiation generation, phase space cooling or formation of time-structured beam. An efficient coupling mechanism between an electron beam and radiation field relies on the use of a magnetic undulator. In this contribution we detail the construction and magnetic measurements of short (11 period) undulators with 7-cm period built using parts of the ALADDIN U3 undulator*. Possible use of these undulators at two accelerator test facilities to support experiment relevant to cooling techniques and radiation souces are discussed. * F. C. Younger, W. Jorge Pearce, B. Ng, Nucl. Instrum. Meth Phys. Res. A 347, pp. 96-101 (1994). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA47 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOA48 | A High-Level Python Interface to the Fermilab ACNET Control System | 383 |
|
||
This paper discusses the implementation of a PYTHON-based high-level interface to the Fermilab ACNET control system. We will especially present examples of applications which include the interfacing of an ELEGANT beam-dynamics model to assist lattice matching and an automated emittance measurement via the quadrupole-scan method. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA48 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOB16 | A Simple Method for Measuring the Electron-Beam Magnetization | 521 |
SUPO15 | use link to see paper's listing under its alternate paper code | |
|
||
There are a number of projects that require magnetized beams, such as electron cooling or aiding in flat beam transforms. Here we explore a simple technique to characterize the magnetization, observed through the angular momentum of magnetized beams. These beams are produced through photoemission. The generating drive laser first passes through microlens arrays (fly-eye light condensers) to form a transversely modulated pulse incident on the photocathode surface. The resulting charge distribution is then accelerated from the photocathode. We explore the evolution of the pattern via the relative shearing of the beamlets, providing information about the angular momentum. This method is illustrated through numerical simulations and preliminary measurements carried out at the Argonne Wakefield Accelerator (AWA) facility are presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB16 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOA38 | Optically Based Diagnostics for Optical Stochastic Cooling | 779 |
SUPO59 | use link to see paper's listing under its alternate paper code | |
|
||
An Optical Stochastic Cooling (OSC) experiment with electrons is planned in the Integrable Optics Test Accelerator (IOTA) ring currently in construction at Fermilab. OSC requires timing the arrival of an electron and its radiation generated from the upstream pickup undulator into the downstream kicker undulator to a precision on the order of less than a fs. The interference of the pickup and kicker radiation suggests a way to diagnose the arrival time to the required precision. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA38 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPOA46 | Benchmark of RF Photoinjector and Dipole Using ASTRA, GPT, and OPAL | 1194 |
SUPO31 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Grant no. DE-SC0015479, and contract No. DE-AC02-06CH11357. With the rapid improvement in computing resources and codes in recent years, accelerator facilities can now achieve and rely on accurate beam dynamics simulations. These simulations include single particle effects (e.g. particle tracking in a magnetic field) as well as collective effects such as space charge (SC), and coherent synchrotron radiation (CSR). Using portions of the Argonne Wakefield Accelerator (AWA) as the benchmark model, we simulated beam dynamics with three particle tracking codes. The AWA rf photoinjector was benchmarked, primarily to study SC, in ASTRA, GPT, and OPAL-T using a 1 nC beam. A 20° dipole magnet was used to benchmark CSR effects in GPT and OPAL-T by bending a 1nC beam at energies between 2 MeV and 100 MeV. In this paper we present the results, and discuss the similarities and differences between the codes. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA46 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOA19 | 50-MeV Run of the IOTA/FAST Electron Accelerator | 326 |
|
||
Funding: Supported by the DOE contract No.DEAC02-07CH11359 to the Fermi Research Alliance LLC. The low-energy section of the photoinjector-based electron linear accelerator at the Fermilab Accelerator Science & Technology (FAST) facility was recently commissioned to an energy of 50 MeV. This linear accelerator relies primarily upon pulsed SRF acceleration and an optional bunch compressor to produce a stable beam within a large operational regime in terms of bunch charge, total average charge, bunch length, and beam energy. Various instrumentation was used to characterize fundamental properties of the electron beam including the intensity, stability, emittance, and bunch length. While much of this instrumentation was commissioned in a 20 MeV running period prior, some (including a new Martin-Puplett interferometer) was in development or pending installation at that time. All instrumentation has since been recommissioned over the wide operational range of beam energies up to 50 MeV, intensities up to 4 nC/pulse, and bunch structures from ~1 ps to more than 50 ps in length. |
||
![]() |
Poster TUPOA19 [4.636 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA19 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |