Author: Kewisch, J.
Paper Title Page
WEA4CO05 Accelerator Physics Design Requirements and Challenges of RF Based Electron Cooler LEReC 867
 
  • A.V. Fedotov, M. Blaskiewicz, W. Fischer, D. Kayran, J. Kewisch, S. Seletskiy, J.E. Tuozzolo
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A Low Energy RHIC electron Cooler (LEReC) is presently under construction at BNL to improve the luminosity of the Relativistic Heavy Ion Collider (RHIC). The required electron beam will be provided by a photoemission electron gun and accelerated by a RF linear accelerator. As a result, LEReC will be first bunched beam electron cooler. In addition, this will be the first electron cooler to cool beams under collisions. The achievement of very tight electron beam parameters required for cooling is very challenging and is being addressed by a proper beam transport and engineering design. In this paper, we describe accelerator physics requirements, design considerations and parameters, as well as associated challenges of such electron cooling approach.
 
slides icon Slides WEA4CO05 [4.866 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEA4CO05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB54 DC Photogun Gun Test for RHIC Low Energy Electron Cooler (LEReC). 1008
 
  • D. Kayran, Z. Altinbas, D.R. Beavis, S. Bellavia, D. Bruno, M.R. Costanzo, A.V. Fedotov, D.M. Gassner, J. Halinski, K. Hamdi, J.P. Jamilkowski, J. Kewisch, C.J. Liaw, G.J. Mahler, T.A. Miller, S.K. Nayak, T. Rao, S. Seletskiy, B. Sheehy, J.E. Tuozzolo, Z. Zhao
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE.
Non-magnetized bunched electron cooling of low-energy RHIC requires electron beam energy in range of 1.6-2.6 MeV, with average current up to 45 mA, very small energy spread, and low emittance [1]. A 400 kV DC gun equipped with photocathode and laser delivery system will serve as a source of high-quality electron beam. Acceleration will be achieved by an SRF 704 MHz booster cavity and other RF components that are scheduled to be operational in early 2018. The DC gun testing in its installed location in RHIC will start in early 2017. During this stage we plan to test the critical equipment in close to operation conditions: laser beam delivery system, cathode QE lifetime, DC gun, beam instrumentation, high power beam dump system, and controls. In this paper, we describe the gun test set up, major components, and parameters to be achieved and measured during the gun beam test.
[1] A. Fedotov. Bunched beam electron cooling for Low Energy RHIC operation. ICFA Beam Dynamics letter, No. 65, p. 22 (December 2014)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB54  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB55 Simulation of Stray Electrons in the RHIC Low Energy Cooler 1012
 
  • J. Kewisch
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Low Energy RHIC electron Cooler, under construction at BNL, accelerates electrons with a 400 kV DC gun and a 2.2 MeV SRF booster cavity. Electrons which leave the cathode at the wrong time will not be accelerated to the correct energies and will not reach the beam dump at the end of the accelerator. Thy may impact the beam pipe after incorrect deflection in dipoles or after being slowed down longitudinally in the booster while the transverse momentum is not affected. In some cases their direction is reversed in the booster and they will impact the cathode. We simulated the trajectories of these electrons using the GPT tracking code. The results are qualitative, not quantitative, since the sources and numbers of the stray electrons are unknown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB55  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB56 Beam Optics for the RHIC Low Energy Electron Cooler (LEReC) 1015
 
  • J. Kewisch, A.V. Fedotov, D. Kayran, S. Seletskiy
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
A Low-energy RHIC Electron Cooler (LEReC) system is presently under construction at Brookhaven National Laboratory. This device shall enable gold ion collisions at energies below the design injection energy with sufficient luminosity. Electron beam with energies between 1.6, 2.0 and 2.6 MeV are necessary. This machine will be the first to attempt electron cooling using bunched electron beam, using a 703 MHz SRF cavity for acceleration. Special consideration must be given to the effect of space charge forces on the transverse and longitudinal beam quality. We will present the current layout of the cooler and beam parameter simulations using the computer codes PARMELA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB56  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB62 Absolute Energy Measurement of the LEReC Electron Beam 1033
 
  • S. Seletskiy, M. Blaskiewicz, A.V. Fedotov, D. Kayran, J. Kewisch, T.A. Miller, P. Thieberger
    BNL, Upton, Long Island, New York, USA
 
  The goal of future operation of the low energy RHIC Electron Cooling (LEReC) accelerator is to cool the RHIC ion beams. To provide successful cooling, the velocities of the RHIC ion beam and the LEReC electron beam must be matched with 10-4 accuracy. While the energy of ions will be known with the required accuracy, the e-beam energy can have an initial offset as large as 5%. The final setting of the e-beam energy will be performed by observing either the Schottky spectrum of debunched ions co-traveling with the e-beam or the recombination signal. Yet, to start observing such signals one has to set the absolute energy of the electron beam with an accuracy better than 10-2, preferably better than 5·10-3. In this paper we discuss how such accuracy can be reached by utilizing the LEReC 180 degree bend as a spectrometer.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB62  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB68 DESIGN AND SIMULATION OF EMITTANCE MEASUREMENT WITH MULTI-SLIT FOR LEREC 1045
 
  • C. Liu, A.V. Fedotov, J. Kewisch, M.G. Minty
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
To improve the luminosity of beam energy scan of low energy Au-Au collision, a electron machine is under con- struction to cool ion beams in both RHIC rings with pulsed electron beam. Over the course of the project, a multi- slit device is needed to characterize the transverse beam emittance of three energies, 0.4, 1.6 and 2.6 MeV. This re- port shows the optimization and compromise of the design, which include the slit width, slit spacing, and drift space from the multi-slit to the downstream profile monitor.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB68  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)