Author: Jansma, W.G.
Paper Title Page
WEPOB03 Magnetic Measurements of Storage Ring Magnets for the APS Upgrade Project 884
 
  • R.J. Dejus, H. Cease, J.T. Collins, G. Decker, A.T. Donnelly, C.L. Doose, W.G. Jansma, M.S. Jaski, J. Liu
    ANL, Argonne, Illinois, USA
  • J. DiMarco
    Fermilab, Batavia, Illinois, USA
  • A.K. Jain
    BNL, Upton, Long Island, New York, USA
 
  Funding: * Work supported by U.S. Department of Energy, Office of Science, under contract number DE-AC02-06CH11357, and contract number DE-SC0012704 for work associated with Brookhaven National Laboratory.
Extensive prototyping of storage ring magnets is ongoing at the Advanced Photon Source (APS) in support of the APS Multi-Bend Achromat upgrade (APS-U) project. As part of the R&D activities 4 quadrupole magnets with slightly different geometries and pole tip materials, and one sextupole magnet with vanadium permendur pole tips were designed, built and tested. Magnets were measured individually using a rotating coil and a Hall probe for detailed mapping of the magnetic field. Magnets were then assembled and aligned relative to each other on a steel support plate and concrete plinth using precision machined surfaces to gain experience with the alignment method chosen for the APS-U storage ring magnets. The required alignment of magnets on a common support structure is 30 micron rms. Measurements of magnetic field quality, strength and magnet alignment after subjecting the magnets and assemblies to different tests will be presented.
 
poster icon Poster WEPOB03 [1.242 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB70 Mechanical Straightening of the 3-m Accelerating Structures at the Advanced Photon Source 1051
 
  • D.J. Bromberek, W.G. Jansma, T.L. Smith, G.J. Waldschmidt
    ANL, Argonne, Illinois, USA
 
  A project is underway at the Advanced Photon Source to mechanically straighten the thirteen 3 meter accelerating structures in the Linac in order to minimize transverse wakefield, and improve charge transport efficiency and beam quality. Flexure supports allow positioning of the structures in the X & Y directions. Mechanical design of the flexure support system, straightening techniques, mechanical measurement methods, and mechanical & RF results will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB70  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)