Author: Ibrahim, A.
Paper Title Page
TUPOA16 A VME and FPGA Based Data Acquisition System for Intensity Monitors 317
 
  • J.S. Diamond, A. Ibrahim, N. Liu, E.S.M. McCrory, A. Semenov
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy
A universal data acquisition system supporting toroids, DCCTs, Faraday cups, srapers and other types of instru-mentation has been developed for reporting beam inten-sity measurements to the Fermilab Accelerator Controls System (ACNet). Instances of this front end, supporting dozens of intensity monitor devices have been deployed throughout the Fermilab accelerator complex in the Main Injector, Recycler, Fermilab Accelerator Science and Technology (FAST) facility and the PIP-II Injector Exper-iment (PXIE). Each front end consists of a VME chassis containing a single board computer (SBC), timing and clock module and one or more 8 to 12-channel digitizer modules. The digitizer modules are based on a Cyclone III FPGA with firmware developed in-house allowing a wide range of flexibility and digital signal processing capability. The front end data acquisition software adds a list of new features to the previous generation allowing users to: take beam intensity measurements at custom points in the acceleration cycle, access waveform data, control machine protection system (MPS) parameters and calculate beam energy loss.

 
poster icon Poster TUPOA16 [1.532 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA16  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOA24 Beam Intensity Monitoring System for the PIP-II Injector Test Accelerator 330
 
  • N. Liu, J.S. Diamond, N. Eddy, A. Ibrahim, N. Patel, A. Semenov
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359.
The PIP-II injector test accelerator is an integrated systems test for the front-end of a proposed CW-compatible, pulsed H superconducting RF linac. This linac is part of Fermilab's Proton Improvement Plan II (PIP-II) upgrade. This injector test accelerator will help minimize the technical risk elements for PIP-II and validate the concept of the front-end. Major goals of the injector accelerator are to test a CW RFQ and H source, a bunch-by-bunch MEBT beam chopper and stable beam acceleration through low-energy superconducting cavities. Operation and characterization of this injector places stringent demands on the types and performance of the accelerator beam diagnostics. This paper discusses the beam intensity monitor systems as well as early commissioning measurements of beam transport through the Medium-Energy Beam Transport (MEBT) beamline.
 
poster icon Poster TUPOA24 [1.039 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA24  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)