Author: Lepage, F.
Paper Title Page
TUPH03 U15 Design and Construction Progress 26
 
  • F. Briquez, C.A. Arrachart, N.B. Baron, P. Berteaud, F. Blache, C.B. Bourgoin, N. Béchu, M.-E. Couprie, J. Da Silva Castro, J.M. Dubuisson, J.P. Duval, C. Herbeaux, F. Lepage, A. Lestrade, F. Marteau, A. Mary, F.M. Michel, S.M. Morand, M.-H. Nguyen, A.R. Rouquié, M. Sebdaoui, G. Sharma, K.T. Tavakoli, M. Tilmont, M. Valléau, M.V. Vandenberghe, J. Vétéran, C. de Oliveira
    SOLEIL, Gif-sur-Yvette, France
 
  A 15 mm period PrFeB Cryogenic Permanent Magnet Undulator (CPMU) is under construction at SOLEIL in the frame of a collaboration with MAXIV, relying on the experience gained from the two PrFeB CPMU already installed at SOLEIL. The improved design includes a magnetic length of 3 m and a minimum gap of 3 mm, leading to a polyvalent device of interest for both synchrotron radiation sources and free electron lasers. A dedicated magnetic measurement bench is also under development to perform measurements at cryogenic temperature, based on the SAFALI system. The designs of both undulator and measurement bench will be explained, the construction progress will be detailed and first results will be given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-TUPH03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPH11 Retractable Absorber (Mask) and White Beam Imager Diagnostic for Canted Straight Section 45
 
  • J. Da Silva Castro, N. Béchu, C. Herbeaux, N. Hubert, N. Jobert, M. Labat, F. Lepage, A. Mary, K.T. Tavakoli
    SOLEIL, Gif-sur-Yvette, France
 
  At the SOLEIL synchrotron, as in other accelerators, two canted sources can coexist on the same straight section for space and economic reasons. For its two long beamlines (ANATOMIX source upstream and NANOSCOPIUM source downstream) SOLEIL has made the choice to equip one of his long straight section with two canted insertion devices capable to operate simultaneously. That implies to take into account the degradation risk management of equipment, due to radiation. As the beam power deposition from the upstream undulator can seriously degrade the downstream one, or even other equipment. To handle these risks, Soleil first designed and installed in 2016 a retractable vertical absorber between both insertions to protect the downstream source from the upstream one. In 2017, Soleil then designed and installed a white beam imager, redundant an existing photon beam monitor (XBPM), to verify the correct positioning / alignment of equipment and beams relative to each other. For the vertical absorber as for the white beam imager Soleil had to meet some interesting technological and manufacturing aspects that we propose to present in a poster.  
poster icon Poster TUPH11 [3.744 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-TUPH11  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)