Paper | Title | Page |
---|---|---|
TUOPMA06 |
Status of the ESRF EBS Storage Ring Engineering and Construction | |
|
||
In the frame of its Extremely Brilliant Source (EBS) upgrade, the ESRF is preparing the replacement of its existing storage ring by a new ring based on a 7-bend achromat lattice enabling to reduce the electron beam horizontal emittance by a factor 30. The project involves challenging engineering requirements due to the large number of magnets, space constraints and specified geometrical precision. In order to validate the feasibility of this very compact assembly with real parts, a Mock-up of a complete EBS cell was assembled in 2017. The preparation of fully equipped girders with all components assembled, aligned and tested was started in October 2017 and is progressing as a rate of 3 per week. The main technical achievements and issues encountered during manufacturing of magnets, girders, chambers and absorbers will be presented, together with an outline of the planned dismantling and installation phases, scheduled from December 2018. This presentation is given on behalf of the ESRF EBS engineering team: J-C Biasci, J Borrel, T Brochard, F Cianciosi, D Coulon, Y Dabin, L Eybert, L Goirand, M Lesourd, N Louis, T Mairs, B Ogier, J Pasquaud, P Van Vaerenbergh, F Villar. | ||
![]() |
Slides TUOPMA06 [13.932 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUOPMA07 | RF Fingers for the New ESRF-EBS Storage Ring | 11 |
|
||
In the new ESRF-EBS (Extremely Brilliant Source) storage ring vacuum chambers assembly, with a reduced aperture and the new omega shape, RF fingers are a key component to ensure good vacuum conditions and reach the best possible machine performance. As a result, dedicated efforts were put into producing a more compact more robust more reliable and easier to assemble RF finger design for the new machine. The work was done in parallel on the beam coupling impedance reduction, which have a direct impact on the electron beam lifetime, and on the mechanical aspect with FEA validation and geometry optimization. Many test have been made, in a mechanical laboratory, including high resolution 3D computed tomography images in order to measure the electrical contact, and also in the existing ESRF storage ring with the electron beam, to validate the final design before launching the series production | ||
![]() |
Slides TUOPMA07 [7.516 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-TUOPMA07 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |