Author: Noll, T.
Paper Title Page
TUBA03 The Generic Mirror Chamber for the European XFEL 121
 
  • T. Noll
    BESSY GmbH, Berlin, Germany
  • H. Sinn, A. Trapp
    XFEL. EU, Hamburg, Germany
 
  For the high demanding requirements of the beam-lines of the European XFEL [*] new mirror chambers were developed, designed and tested. A prototype contains the main features of all needed ten units which are tested extensively. The concept of the mirror chamber is a further development of our Cartesian parallel kinematics for X-ray optics in the UHV [**]. The stiffness and vibration behaviour were further improved and the position resolution was increased compared to earlier implementations at Bessy and Flash. For that the drives were redesigned and now feature a stroke of 100 mm with nanometer resolution.
* H. Sinn, TDR: X-Ray Optics and Beam Transport, December 2012, XFEL. EU TR-2012-006 doi:10.3204
** T. Noll, Parallel kinematics for nanoscale Car-tesian motions, Precision Engineering Vol.33/3 Pg.291
 
slides icon Slides TUBA03 [38.484 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUBA03  
About • paper received ※ 09 September 2016       paper accepted ※ 15 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPE22 Mechanical Design of the MID Split-and-Delay Line at the European XFEL 50
 
  • B. Friedrich, S. Eisebitt, T. Noll
    MBI, Berlin, Germany
  • S. Eisebitt, B. Friedrich
    Technische Universität Berlin, Berlin, Germany
  • W. Lu, T. Roth
    European XFEL, Schenefeld, Germany
  • A. Madsen
    XFEL. EU, Hamburg, Germany
 
  A new split-and-delay line (SDL) is under development for the Materials Imaging and Dynamics (MID) end station at the European XFEL.* The device utilises Bragg reflection to provide pairs of X-ray pulses with an energy of (5 - 10) keV and a continuously tunable time delay of (-10 - 800) ps - thus allowing zero-crossing of the time delay. The mechanical concept features separate positioning stages for each optical element. Those are based on a serial combination of coarse motion axes and a fine alignment 6 DoF Cartesian parallel kinematics**. That allows to meet the contradictory demands of a fast long-range travel of up to 1000 mm and in the same time a precise alignment with a resolution in the nanometer range. Multiple laser interferometers monitor the position of the optical elements and allow an active control of their alignment. All optical elements and mechanics will be installed inside an UHV chamber, including the interferometer and about 100 stepper motors. With this paper we present the mechanical design for the SDL. It will additionally show the design of a prototype of a positioning stage which allows extensive testing of the implemented concepts and techniques.
* A. Madsen et al., Technical Design Report: Scientific Instrument MID, 2013.
** T. Noll et al., Parallel kinematics for nanoscale Cartesian motions, Precision Engineering, vol. 33, no. 3, 2009.
 
poster icon Poster MOPE22 [4.691 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE22  
About • paper received ※ 11 September 2016       paper accepted ※ 14 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPE38 The Mechanics of the Vekmag Experiment 370
 
  • T. Noll
    MBI, Berlin, Germany
  • F. Radu
    HZB, Berlin, Germany
 
  For the experiments at synchrotron radiation source BESSY II synchrotron of the Helmholtz-Zentrum Berlin a new end station and a new beam-line were developed and are now in user operation. The end station contains a 9-2-1 Tesla vectorial magnet and a cryostat with manipulator for the sample cooling and positioning, an UHV deposition chamber, and an UHV detector chamber. We report here on the technical design of the detector chamber which is placed below the magnet chamber and is also connected to the deposition chamber. Because of various constrains a sophisticated mechanics had to be developed to provide integrated functionality for both the detector holder and the sample transfer units. The detector unit consists of a tubular holder of 5 cm diameter which travels more than 60 cm vertically and exhibits an unlimited rotation degree of freedom of 360 degrees within the magnet bore. The sample transfer unit consists of a telescopic movement mechanism allowing for the sample holder vertical travel within the detector tubular holder. The functionality challenges and their resolve were addressed in an innovative mechanical design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEPE38  
About • paper received ※ 09 September 2016       paper accepted ※ 16 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)