Author: Kay, J.
Paper Title Page
MOPE37 Diamond Multi-Bend Achromats for Low Emittance and New Insertion Devices 90
 
  • J. Kay, N.P. Hammond
    DLS, Oxfordshire, United Kingdom
 
  Diamond Light Source is pioneering the move to a Multi Bend Achromat storage ring lattice for low emittance combined with the creation of new straight sections available for Insertion Devices (ID). Diamond is at an advanced stage of replacing one Double Bend Achromat (DBA) cell of the existing storage ring with a Double Double Bend Achromat (DDBA). The DDBA cell which is to be installed in Autumn 2016 has 4 dipoles and has been designed with a new straight section in the middle. This allows a new ID source point to be installed on an existing Bending Magnet port in the shield wall for a new micro-focus protein crystallography beamline called VMX-m. This same principle will be applied to the proposed Diamond II project which will be based on a Double Triple Bend Achromat with 6 dipoles per cell achieving even lower emittance whilst providing many more IDs. This paper describes the engineering challenges of these projects.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE37  
About • paper received ※ 09 September 2016       paper accepted ※ 15 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE10 A Thermal Exploration of Different Monochromator Crystal Designs 176
 
  • J.S. Stimson, M.C.L. Ward
    BCU, Birmingham, United Kingdom
  • S. Diaz-Moreno, P. Docker, J. Kay, J. Sutter
    DLS, Oxfordshire, United Kingdom
 
  Eight potential monochromator crystal designs were subjected to a combination of three different beam powers on two different footprints. The temperature and thermal deformation were determined for each. It was found that thermal deformation of the lattice is negligible compared to the surface curvature, and that while the thinnest crystal wafer showed the smallest temperature increase, crystals cooled from the bottom alone demonstrated a far more uniform thermal deformation and a larger radius of curvature.  
poster icon Poster TUPE10 [3.411 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE10  
About • paper received ※ 10 September 2016       paper accepted ※ 21 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)