Author: Buccianti, L.
Paper Title Page
MOPE08 The LNLS Metrology Building 17
 
  • H.G.P. de Oliveira, C. Esper Neto, P.T. Fonseca, R.R. Geraldes, B.C. Meyer, M.A. Pereira, G.L.M.P. Rodrigues, L. Sanfelici, L.G. da Silva
    LNLS, Campinas, Brazil
  • L. Buccianti, M.H.A. Costa
    Biotec Controle Ambiental, São José dos Campos, SP, Brazil
  • C. Prudente
    Prudente Engenharia Ltda., Uberlândia, Minas Gerais, Brazil
 
  Funding: Brazilian Ministry of Science, Technology, Innovation and Communication.
The increasing demands of instrumentation projects for SIRIUS require more sensitive equipment to be devel-oped and characterized in theμand nanometer scale. To achieve this level of precision it is necessary to work within a controlled environment, minimizing instabilities and disturbance effects such as temperature variation and vibrations. Based on metrology labs as those at BESSY, ESRF, DLS and others, a new facility is currently under final construction stage at the LNLS, which will be dedi-cated to high precision optical and mechanical metrolo-gies. This work describes in detail the project of the new LNLS Metrology Building.
 
poster icon Poster MOPE08 [2.829 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE08  
About • paper received ※ 09 September 2016       paper accepted ※ 15 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE26 Carbon-Steel/poliethylene Radiation Enclosures for the Sirius Beamlines 223
 
  • L. Sanfelici, H.F. Canova, F.H. Cardoso, R. Madacki, M.A. Pereira, M.L. Roca Santo, L.G. Silva, M.S. Silva, J.E. dos Santos
    LNLS, Campinas, Brazil
  • L. Buccianti, M.H.A. Costa, E. Palombarini
    Biotec Controle Ambiental, São José dos Campos, SP, Brazil
  • C. Prudente
    Prudente Engenharia Ltda., Uberlândia, Minas Gerais, Brazil
 
  Funding: Brazilian Ministry of Science, Technology, Innovation and Communication
Lead enclosures have been used over the past decades for radiation protection at mid and high-energy synchrotron light-sources, requiring nearly 10% of the investment needed to set up a new beamline. Due to the increasing concern about neutron levels, in part due to the reduction of the photon radiation levels with the increased thickness of the hutch walls, the existing constructive models were revisited and a new constructive approach based on Carbon-Steel (CS) and High-Density Polyethylene (HDPE) is proposed for the SIRIUS beamlines, leading to increased overall radiation protection and potentially lower cost. This work is going to show preliminary simulation results, cost-comparison, as well as a few mechanical design details and prototyping initiatives.
 
poster icon Poster TUPE26 [2.930 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE26  
About • paper received ※ 09 September 2016       paper accepted ※ 21 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)