MOPOPA —  Poster Session   (29-Aug-22   16:00—18:00)
Paper Title Page
MOPOPA02 Identification of the Mechanical Dynamics of the Superconducting Radio-Frequency Cavities for the European XFEL CW Upgrade 76
 
  • W.H. Syed, A. Bellandipresenter, J. Branlard, A. Eichler
    DESY, Hamburg, Germany
 
  The Eu­ro­pean X-Ray Free-Elec­tron Laser (Eu­XFEL) is to-date the largest X-ray re­search fa­cil­ity around the world which spans over 3.4 km. Eu­XFEL is cur­rently being op­er­ated in a pulsed mode with a rep­e­ti­tion rate of 10Hz. One up­grade sce­nario con­sists of op­er­at­ing the Eu­XFEL also in a Con­tin­u­ous-Wave (CW) mode of op­er­a­tion to im­prove the qual­ity of ex­per­i­ments. This up­grade brings new chal­lenges and re­quires new al­go­rithms to deal with con­trol­ling a sta­ble ac­cel­er­at­ing field in­side the Su­per­con­duct­ing Ra­diofre­quency (SRF) ac­cel­er­at­ing cav­i­ties and keep­ing them on res­o­nance in this new mode of op­er­a­tion. The pur­pose of this re­search work is to iden­tify the me­chan­i­cal dy­nam­ics of the cav­i­ties which will fa­cil­i­tate the de­vel­op­ment of the res­o­nance con­troller for the CW up­grade. To this ex­tent, ex­per­i­ments were con­ducted at a test bench. For the first time, in this work, two dif­fer­ent types of spec­trally rich ex­ci­ta­tion sig­nals: multi-sine and stepped-sine are used to ex­cite the me­chan­i­cal dy­nam­ics of the cav­i­ties using the piezo ac­tu­a­tor. After the analy­sis of ex­per­i­men­tal data, me­chan­i­cal modes are suc­cess­fully iden­ti­fied and will be used to de­sign the con­troller.  
poster icon Poster MOPOPA02 [0.687 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA02  
About • Received ※ 23 August 2022 — Revised ※ 25 August 2022 — Accepted ※ 26 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA03 Beam-Transient-Based LLRF Voltage Signal Calibration for the European XFEL 80
 
  • N. Walker, V. Ayvazyan, J. Branlardpresenter, S. Pfeiffer, Ch. Schmidt
    DESY, Hamburg, Germany
 
  The Eu­ro­pean XFEL linac con­sists of 25 su­per­con­duct­ing RF (SRF) sta­tions. With the ex­cep­tion of the first sta­tion which is part of the in­jec­tor, each sta­tion com­prises 32 1.3-GHz SRF TESLA cav­i­ties, dri­ven by a sin­gle 10-MW kly­stron. A so­phis­ti­cated state-of-the-art low-level RF (LLRF) sys­tem main­tains the com­plex vec­tor sum of each RF sta­tion. Mon­i­tor­ing and main­tain­ing the cal­i­bra­tion of the cav­ity elec­tric field (gra­di­ent) probe sig­nals has proven crit­i­cal in achiev­ing the max­i­mum en­ergy per­for­mance and avail­abil­ity of the SRF linac. Since there are no ded­i­cated di­ag­nos­tics for cross-check­ing cal­i­bra­tion of the LLRF sys­tem, a pro­ce­dure has been im­ple­mented based on si­mul­ta­ne­ously mea­sur­ing the beam tran­sient in open-loop op­er­a­tion of all cav­i­ties. Based on meth­ods orig­i­nally de­vel­oped at FLASH, the Eu­ro­pean XFEL pro­ce­dure makes use of au­toma­tion and the XFEL LLRF DAQ sys­tem to pro­vide a ro­bust and rel­a­tively fast (min­utes) way of ex­tract­ing the tran­sient data, and is now rou­tinely sched­uled once per week. In this paper, we will re­port on the back­ground, im­ple­men­ta­tion, analy­sis meth­ods, typ­i­cal re­sults, and their sub­se­quent ap­pli­ca­tion for ma­chine op­er­a­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA03  
About • Received ※ 13 August 2022 — Revised ※ 23 August 2022 — Accepted ※ 14 September 2022 — Issue date ※ 27 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA04 Simulation Study of an Accelerator-based THz FEL for Pump-Probe Experiments at the European XFEL 83
 
  • P. Boonpornprasert, G.Z. Georgiev, M. Krasilnikov, X.-K. Li, A. Lueangaramwong
    DESY Zeuthen, Zeuthen, Germany
 
  The Eu­ro­pean XFEL con­sid­ers to per­form THz-pump and X-ray-probe ex­per­i­ments. A promis­ing con­cept to pro­vide the THz pulses with sat­is­fac­tory prop­er­ties for the ex­per­i­ments is to gen­er­ate them using a lin­ear ac­cel­er­a­tor-based free-elec­tron laser (FEL). A sim­u­la­tion study of a THz FEL fa­cil­ity ca­pa­ble of gen­er­at­ing pow­er­ful tun­able co­her­ent THz ra­di­a­tion that cov­ers the wave­length range of 25 ’m to 100 ’m was per­formed. An ac­cel­er­a­tor beam­line lay­out based on the Photo In­jec­tor Test Fa­cil­ity at DESY in Zeuthen (PITZ) and an AP­PLE-II un­du­la­tor with a pe­riod length of 40 mm were used in the sim­u­la­tion study. Re­sults of the study are pre­sented and dis­cussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA04  
About • Received ※ 25 August 2022 — Revised ※ 27 August 2022 — Accepted ※ 30 August 2022 — Issue date ※ 05 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA11 Laser-to-RF Synchronisation Drift Compensation for the CLARA test facility 87
 
  • J. Henderson, A.J. Moss, E.W. Snedden
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.C. Dexter
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  Fem­tosec­ond syn­chro­ni­sa­tion be­tween charged par­ti­cle beams and ex­ter­nal laser sys­tems is a sig­nif­i­cant chal­lenge for mod­ern par­ti­cle ac­cel­er­a­tors. To achieve fem­tosec­ond syn­chro­ni­sa­tion of the CLARA elec­tron beam and end user laser sys­tems will re­quire tight syn­chro­ni­sa­tion of sev­eral ac­cel­er­a­tor sub­sys­tems. This paper re­ports on a method to com­pen­sate for en­vi­ron­men­tally dri­ven long-term drift in Laser-RF phase de­tec­tion sys­tems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA11  
About • Received ※ 22 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA12 Preserving Bright Electron Beams: Distorted CSR Kicks 91
SUPCRI08   use link to see paper's listing under its alternate paper code  
 
  • A. Dixon, T.K. Charles
    The University of Liverpool, Liverpool, United Kingdom
  • T.K. Charles, P.H. Williams
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • S. Thorin
    MAX IV Laboratory, Lund University, Lund, Sweden
  • P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Short pulse, low emit­tance elec­tron beams are nec­es­sary to drive bright FEL X-rays, for this rea­son it is im­por­tant to pre­serve and limit emit­tance growth. The strong bunch com­pres­sion re­quired to achieve the short bunches, can lead to co­her­ent syn­chro­tron ra­di­a­tion (CSR)-in­duced emit­tance growth, and while there are some meth­ods of CSR can­cel- la­tion, these meth­ods may be less ef­fec­tive when the CSR kicks are dis­torted. In an at­tempt to un­der­stand why CSR kicks be­come dis­torted, we com­pare the CSR kicks calcu- lated using the whole beam pa­ra­me­ters to the CSR kicks cal­cu­lated using the lon­gi­tu­di­nally sliced beam pa­ra­me­ters, when prop­a­gated to the end of the bunch com­pres­sor. We find that CSR kicks can be­come dis­torted when cal­cu­lated with non-uni­form slice beam pa­ra­me­ters. While slice beam pa­ra­me­ters that are uni­form along the cen­tre of the bunch, do not re­sult in dis­torted CSR kicks.  
poster icon Poster MOPOPA12 [1.553 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA12  
About • Received ※ 24 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 27 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA13 200 MV Record Voltage of vCM and LCLS-II-HE Cryomodules Production Start Fermilab 95
 
  • T.T. Arkan, D. Bafia, D.J. Bice, J.N. Blowers, A.T. Cravatta, B. Giaccone, C.J. Grimm, B.D. Hartsell, J.A. Kaluzny, M. Martinello, T.H. Nicol, Y.M. Orlov, S. Posen
    Fermilab, Batavia, Illinois, USA
  • M. Checchin
    SLAC, Menlo Park, California, USA
 
  Funding: Department of Energy
The Linac Co­her­ent Light Source (LCLS) is an X-ray sci­ence fa­cil­ity at SLAC Na­tional Ac­cel­er­a­tor Lab­o­ra­tory. The LCLS-II pro­ject (an up­grade to LCLS) is in the com­mis­sion­ing phase; the LCLS-II-HE (High En­ergy) pro­ject is an­other up­grade to the fa­cil­ity, en­abling higher en­ergy op­er­a­tion. An elec­tron beam is ac­cel­er­ated using su­per­con­duct­ing radio fre­quency (SRF) cav­i­ties built into cry­omod­ules. It is planned to build 24 1.3 GHz stan­dard cry­omod­ules and 1 1.3 GHz sin­gle-cav­ity Buncher Cap­ture Cav­ity (BCC) cry­omod­ule for the LCLS-II-HE pro­ject. Four­teen of these stan­dard cry­omod­ules and one BCC are planned to be as­sem­bled and tested at Fer­mi­lab. Pro­cure­ments for stan­dard cry­omod­ule com­po­nents are near­ing com­ple­tion. The first LCLS-II-HE cry­omod­ule, re­ferred to as the ver­i­fi­ca­tion cry­omod­ule (vCM) was as­sem­bled and tested at Fer­mi­lab. Fer­mi­lab has com­pleted the as­sem­bly of the sec­ond cry­omod­ule. This paper pre­sents LCLS-II-HE cry­omod­ule pro­duc­tion sta­tus at Fer­mi­lab, em­pha­siz­ing the changes done based on the suc­cesses, chal­lenges, mit­i­ga­tions, and lessons learned from LCLS-II; val­i­da­tion of the changes with the ex­cel­lent vCM re­sults.
 
poster icon Poster MOPOPA13 [1.975 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA13  
About • Received ※ 10 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 09 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA15 Three Years of Operation of the SPIRAL2 SC LINAC- RF Feedback 98
 
  • M. Di Giacomo, M. Aburas, P.-E. Bernaudin, O. Delahaye, A. Dubosq, A. Ghribi, J.-M. Lagniel, J.F. Leyge, G. Normand, A.K. Orduz, F. Pillon, L. Valentin
    GANIL, Caen, France
  • F. Bouly
    LPSC, Grenoble Cedex, France
  • S. Sube
    CEA-DRF-IRFU, France
 
  The su­per­con­duct­ing LINAC of SPI­RAL2 at the GANIL fa­cil­ity has been in op­er­a­tion since Oc­to­ber 2019. The ac­cel­er­a­tor uses 12 low beta and 14 high beta su­per­con-duct­ing quar­ter wave cav­i­ties, cooled at 4°K, work­ing at 88 MHz. The cav­i­ties are op­er­ated at a nom­i­nal gra­di­ent of 6.5 MV/m and are in­de­pen­dently pow­ered by a LLRF and a solid-state am­pli­fier, pro­tected by a cir­cu­la­tor. Pro-ton and deuteron beam cur­rents can reach 5 mA and beam load­ing per­tur­ba­tion is par­tic­u­larly strong on the first cav­i­ties, as they are op­er­ated at field lev­els much lower than the nom­i­nal one. This paper pre­sents a feed­back after three years of oper-ation, fo­cuses on the RF is­sues, de­scrib­ing prob­lems and re­quired im­prove­ment on the low level, con­trol and pow-er sys­tems  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA15  
About • Received ※ 14 August 2022 — Revised ※ 17 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 02 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA16 UNILAC Heavy Ion Beam Operation at FAIR Intensities 102
 
  • W.A. Barth, M. Miski-Oglu, U. Scheeler, H. Vormann, M. Vossberg, S. Yaramyshev
    GSI, Darmstadt, Germany
  • M. Miski-Oglu
    HIM, Mainz, Germany
 
  The GSI-UNI­LAC as well as the heavy ion syn­chro­tron SIS18 will serve as a high cur­rent heavy ion in­jec­tor for the FAIR syn­chro­tron SIS100. In the con­text of an ad­vanced ma­chine in­ves­ti­ga­tion pro­gram ac­cel­er­a­tion and trans­port of space charge dom­i­nated argon beam in­side en­tire UNI­LAC have been ex­plored. The con­ducted high cur­rent argon beam mea­sure­ments through­out the UNI­LAC-post­strip­per and trans­fer­line to SIS18 show a trans­ver­sal emit­tance growth of only 35% for the de­sign cur­rent of 7 emA (40Ar10+). By hor­i­zon­tal col­li­ma­tion of the UNI­LAC beam emit­tance, the space charge limit could be reached at slightly lower pulse cur­rents, but ac­cord­ingly longer in­jec­tion times. Fur­ther im­prove­ments in bril­liance can be ex­pected from the planned up­grade mea­sures, in par­tic­u­lar on the high-cur­rent in­jec­tor linac.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA16  
About • Received ※ 19 August 2022 — Revised ※ 22 August 2022 — Accepted ※ 26 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA17 RF Commissioning of the First-of-Series Cavity Section of the Alvarez 2.0 at GSI 106
 
  • M. Heilmann, L. Groening, C. Herr, M. Hoerr, S. Mickat, B. Schlitt, G. Schreiber
    GSI, Darmstadt, Germany
 
  The ex­ist­ing post-strip­per DTL of the GSI UNI­LAC will be re­placed with the new Al­varez 2.0 DTL to serve as the in­jec­tor chain for the Fa­cil­ity of An­tipro­ton and Ion Re­search (FAIR). The 108.4 MHz Al­varez 2.0 DTL with a total length of 55 me­ters has an input en­ergy of 1.36 MeV/u and the out­put en­ergy is 11.32 MeV/u. The pre­sented First-of-Se­ries (FoS) cav­ity sec­tion with 11 drift tubes and a total length of 1.9 m is the first part of the first cav­ity of the Al­varez 2.0 DTL. After cop­per plat­ing and as­sem­bly of the cav­ity the RF-con­di­tion­ing started in July 2021. These pro­ceed­ing gives an overview on the re­sults of the suc­cess­fully RF-con­di­tion­ing to reach the nec­es­sary gap volt­age for ura­nium op­er­a­tion in­clud­ing a com­fort­able safety mar­gin.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA17  
About • Received ※ 24 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 01 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA18 High Intensity Heavy Ion Beam Optimization at GSI UNILAC 110
 
  • H. Vormann, W.A. Barth, M. Miski-Oglu, U. Scheeler, M. Vossberg, S. Yaramyshev
    GSI, Darmstadt, Germany
 
  To im­prove the UNI­LAC’s per­for­mance for the up­com­ing use as heavy ion in­jec­tor for the FAIR ac­cel­er­a­tor chain, ded­i­cated beam in­ves­ti­ga­tions have been car­ried out. In par­tic­u­lar mea­sure­ments with Bis­muth and Ura­nium beams re­quire the high­est ac­cel­er­at­ing volt­ages and pow­ers of the rf cav­i­ties, the rf trans­mit­ters and the mag­net power con­vert­ers. After four years with­out Ura­nium op­er­a­tion (resp. with Ura­nium, but re­stricted cav­ity volt­ages), the UNI­LAC has now been op­er­ated again with a per­for­mance close to that of for­mer years. Sev­eral up­grade mea­sures will im­prove the UNI­LAC ca­pa­bil­ity. In com­bi­na­tion with the pro­to­type pulsed gas strip­per with hy­dro­gen gas, beam in­ten­si­ties not far below the FAIR re­quire­ments can al­ready now be ex­pected.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA18  
About • Received ※ 24 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA19 Preparation for Commissioning with Beam of "Advanced Demonstrator" Module with Heavy Ion Beam 114
 
  • M. Miski-Oglu, W.A. Barthpresenter, M. Basten, C. Burandt, F.D. Dziuba, T. Kürzeder, S. Lauber, J. List, S. Yaramyshev
    HIM, Mainz, Germany
  • W.A. Barthpresenter, M. Basten, C. Burandt, F.D. Dziuba, V. Gettmann, T. Kürzeder, S. Lauber, J. List, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barthpresenter, F.D. Dziuba, S. Lauber, J. List
    KPH, Mainz, Germany
  • H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  The in­te­gra­tion of the ac­cel­er­a­tor com­po­nents in to the cryo­genic mod­ule pro­to­type (Ad­vanced Demon­stra­tor) is a major mile­stone of the R&D for the su­per­con­duct­ing heavy ion con­tin­u­ous wave lin­ear ac­cel­er­a­tor HE­LIAC at GSI. The HE­LIAC is joint pro­ject of Helmholtz In­sti­tute Mainz (HIM) and GSI de­vel­oped in col­lab­o­ra­tion with IAP Goethe Uni­ver­sity Frank­furt. This mod­ule is equipped with three su­per­con­duct­ing (sc) Cross bar H-mode (CH) ac­cel­er­a­tion cav­i­ties CH0-CH2 and a sc re­buncher cav­ity, as well as two sc so­le­noids. The com­mis­sion­ing of the cryo­genic mod­ule with Argon beam at GSI is sched­uled for Au­gust 2023. In prepa­ra­tion for the beam test ac­tiv­i­ties, the beam­line, which con­nects the High Charge State In­jec­tor (HLI) with the test­ing area, has been in­stalled. The beam­line com­prises a pair of phase probes for Time Of Flight (TOF) mea­sure­ment of the in­com­ing beam en­ergy, quadru­pole lenses and a 4-gap RF-buncher cav­ity. The beam di­ag­nos­tics bench be­hind the cryo mod­ule is equipped with phase probe pairs, a slit-grid de­vice, a bunch shape mon­i­tor (Fes­h­enko mon­i­tor) for mea­sure­ments of the lon­gi­tu­di­nal beam pro­file. The bench al­lows com­plete 6d char­ac­ter­i­za­tion of the ion beam.  
poster icon Poster MOPOPA19 [3.074 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA19  
About • Received ※ 24 August 2022 — Revised ※ 29 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 04 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA20 Q Drop Tendency of Half-Wave Resonator Cavity 118
 
  • Y. Jung, H. Jang, H. Kimpresenter, H. Kimpresenter, J.W. Kim
    IBS, Daejeon, Republic of Korea
  • S. Jeon
    Kyungpook National University, Daegu, Republic of Korea
 
  All HWRs (half-wave res­onator su­per­con­duct­ing cav­i­ties) have been fab­ri­cated and in­stalled in the low en­ergy sec­tion of the LINAC in IBS. All HWR cav­i­ties have been tested (ver­ti­cal tests, VT) both at 4.2 K and 2.1 K cryo­genic sur­round­ings al­though op­er­at­ing tem­per­a­ture of HWRs is 2.1 K. Good cav­i­ties of high qual­ity fac­tors showed the Q drop ten­dency of 2.1 k were very sim­i­lar to that of 4.2 K. How­ever, in many cases, Q drop ten­dency of 2.1 K were not sim­i­lar with 4.2 K, rather Q de­creased more rapidly than 4.2 K which means the sur­face re­sis­tance of the cav­ity rapidly in­creased at 2 K sur­round­ing. In this study, we will re­port that var­i­ous Q re­sults of HWRs and com­pare their Q drop ten­dency as a func­tion of tem­per­a­ture, 2.1 K and 4.2 K.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA20  
About • Received ※ 23 August 2022 — Revised ※ 28 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA21 RF Beam Sweeper for Purifying In-Flight Produced Rare Isotope Beams at ATLAS Facility 122
 
  • S.V. Kutsaev, R.B. Agustsson, A.C. Araujo Martinezpresenter, J. Peña González, A.Yu. Smirnov
    RadiaBeam, Santa Monica, California, USA
  • B. Mustapha
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under SBIR grant DE-SC0019719.
Ra­di­a­Beam is de­vel­op­ing an RF beam sweeper for puri-fy­ing in-flight pro­duced rare iso­tope beams at the ATLAS fa­cil­ity of Ar­gonne Na­tional Lab­o­ra­tory. The de­vice will op­er­ate in two fre­quency regimes ’ 6 MHz and 12 MHz ’ each pro­vid­ing a 150 kV de­flect­ing volt­age, which dou-bles the ca­pa­bil­i­ties of the ex­ist­ing ATLAS sweeper. In this paper, we pre­sent the de­sign of a high-volt­age RF sweeper and dis­cuss the elec­tro­mag­netic, beam dy­nam­ics, and solid-state power source for this de­vice.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA21  
About • Received ※ 14 August 2022 — Revised ※ 19 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA22 High-Gradient Accelerating Structure for Hadron Therapy Linac, Operating at kHz Repetition Rates 126
 
  • S.V. Kutsaev, R.B. Agustsson, A.C. Araujo Martinezpresenter, A.Yu. Smirnov, S.U. Thielk
    RadiaBeam, Santa Monica, California, USA
  • V.A. Dolgashev
    SLAC, Menlo Park, California, USA
  • B. Mustapha, G. Ye
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of High Energy Physics, under STTR grant DE-SC0015717 and Accelerator Stewardship Grant, Proposal No. 0000219678.
Ar­gonne Na­tional Lab­o­ra­tory and Ra­di­a­Beam have de­signed the Ad­vanced Com­pact Car­bon Ion Linac (ACCIL) for the ac­cel­er­a­tion of car­bon an pro­ton beams up to the en­er­gies of 450 MeV/u, re­quired for im­age-guided hadron ther­apy. Re­cently, this pro­ject has been en­hanced with the ca­pa­bil­ity of fast tu­mour track­ing and treat­ment through the 4D spot scan­ning tech­nique. Such so­lu­tion of­fers a promis­ing ap­proach to si­mul­ta­ne­ously re­duce the cost and im­prove the qual­ity of the treat­ment. In this paper, we re­port the de­sign of an ac­cel­er­at­ing struc­ture, ca­pa­ble of op­er­at­ing up to 1000 pulses per sec­ond. The linac uti­lizes an RF pulse com­pres­sor for use with com­mer­cially avail­able kly­strons, which will dra­mat­i­cally re­duce the price of the sys­tem.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA22  
About • Received ※ 13 August 2022 — Revised ※ 19 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPA24 High-Brightness RFQ Injector for LANSCE Multi-Beam Operation 130
MOOPA06   use link to see paper's listing under its alternate paper code  
 
  • Y.K. Batygin, D.A.D. Dimitrov, I. Draganić, D.V. Gorelov, E. Henestroza, S.S. Kurennoy
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by US DOE under contract 89233218CNA000001
The unique fea­ture of the LAN­SCE ac­cel­er­a­tor fa­cil­ity is multi beam op­er­a­tion. Ac­cel­er­a­tor de­liv­ers 100 MeV H+ and 800 MeV H beams to five ex­per­i­men­tal areas. The LAN­SCE front end is equipped with two in­de­pen­dent in­jec­tors for H+ and H beams, merg­ing at the en­trance of a Drift Tube Linac (DTL). Ex­ist­ing Cock­croft-Wal­ton (CW) - based in­jec­tor pro­vides con­ser­va­tion of high value of beams bright­ness be­fore in­jec­tion into DTL. To re­duce long-term op­er­a­tional risks and sup­port beam de­liv­ery with high re­li­a­bil­ity, we de­signed an RFQ-based front end as a mod­ern in­jec­tor re­place­ment for the CW in­jec­tors. Pro­posed in­jec­tor in­cludes two in­de­pen­dent low-en­ergy trans­ports merg­ing beams at the en­trance of a sin­gle RFQ, which ac­cel­er­ates si­mul­ta­ne­ously both pro­tons and H ions with mul­ti­ple fla­vors of the beams. Paper dis­cusses de­tails of beam physics de­sign and pre­sents in­jec­tor pa­ra­me­ters.
 
slides icon Slides MOPOPA24 [3.266 MB]  
poster icon Poster MOPOPA24 [5.806 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-MOPOPA24  
About • Received ※ 21 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 28 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)