FR1AA —  Plenary Session 12   (02-Sep-22   08:30—10:30)
Chair: D.C. Faircloth, STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
Paper Title Page
FR1AA01
Beam Commissioning and Operation Status of LEAF  
 
  • Y. Yang, L.T. Sun, H.W. Zhao
    IMP/CAS, Lanzhou, People’s Republic of China
 
  LEAF (Low En­ergy heavy ion Ac­cel­er­a­tor Fa­cil­ity) is a low en­ergy high in­ten­sity heavy ion ac­cel­er­a­tor com­plex for mul­ti­dis­ci­pline re­searches that fea­tures a high per­for­mance su­per­con­duct­ing ECR (Elec­tron Cy­clotron Res­o­nance) ion source, and a high cur­rent heavy ion beam lianc. The fa­cil­ity has been put into com­mis­sion­ing since 2018. The RFQ has suc­cess­fully ac­cel­er­ated the beams with M/q within 2~7 in the CW regime. High trans­mis­sion ef­fi­cien­cies (typ­i­cally higher than 97%) were rel­a­tively easy to achieve for beam cur­rents of ~0.1 emA level. Ex­per­i­men­tal re­search such as C-C burn­ing in­ves­ti­ga­tion in nu­clear as­tro­physics needs in­tense heavy ion beam of a broad beam en­ergy vari­a­tion while main­tain­ing very low en­ergy spread. A setup of ion beam en­ergy mod­u­la­tion sys­tem has been de­vel­oped, which is mainly com­posed of a drift tube linac (DTL) for beam en­ergy tun­ing and two quar­ter wave res­onator (QWR) re-bunch­ers placed at up­stream and down­stream of the DTL re­spec­tively for beam qual­ity con­trol and lon­gi­tu­di­nal match­ing. More than 0.05 pmA car­bon beam with an en­ergy spread of <0.3% (FWHM) has been de­liv­ered to the ex­per­i­men­tal ter­mi­nal.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides FR1AA01 [4.344 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1AA02
CSNS-II Superconducting Linac Design  
 
  • J. Peng
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  This paper pre­sents the physics de­sign of the su­per­con­duct­ing linac for CSNS-II pro­ject which starts in this year. In the CSNS up­grade pro­ject, the linac en­ergy will be in­cresed to 300MeV from 80MeV with both 324MHz spoke cav­i­ties and 648MHz el­lipse cav­i­ties. It will be the first su­per­con­duct­ing H linac as a RCS in­jec­tor. It is re­quired to keep a high sta­bil­ity of the in­jec­tion beam en­ergy.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides FR1AA02 [2.179 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1AA03 Status and Challenges at TRIUMF ISAC Facility 866
 
  • Z.Y. Yao, Z.T. Ang, T. Au, K. Fong, X.L. Fu, J.J. Keir, P. Kolb, D. Lang, R.E. Laxdal, R. Leewe, Y. Ma, B. Matheson, R.S. Sekhon, B.S. Waraich, Q. Zheng, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
 
  The ISAC fa­cil­ity uses the ISOL tech­nique to pro­duce ra­dioac­tive ions for ex­per­i­ments. The post-ac­cel­er­a­tor con­sists of a room tem­per­a­ture linac (ISAC-I) and a su-per­con­duct­ing linac (ISAC-II). After more than two dec-ades of beam de­liv­ery in ISAC, the RF sys­tems have met var­i­ous chal­lenges re­gard­ing in­creased op­er­a­tion re­quire-ments, sys­tem sta­bil­ity is­sues and per­for­mance im­prove-ments. This paper dis­cusses the de­tailed chal­lenges in re­cent years in both ISAC-I and ISAC-II. The up­grade plan or mit­i­ga­tion so­lu­tion to ad­dress each chal­lenge is re­ported re­spec­tively. A hint of the long-term vi­sion at ISAC is also briefly de­scribed at the end of the paper.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides FR1AA03 [6.986 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-FR1AA03  
About • Received ※ 13 August 2022 — Revised ※ 21 August 2022 — Accepted ※ 29 August 2022 — Issue date ※ 01 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1AA04 SARAF Commissioning: Injector, MEBT and Chopper 872
 
  • J. Dumas, D. Chirpaz, D. Darde, J. Dumas, R.D. Duperrier, G. Ferrand, A. Gaget, F. Gohier, F. Gougnaud, T.J. Joannem, V. Nadot, N. Pichoff, F. Senée, C. Simon, D.U. Uriot, L. Zhao
    CEA-IRFU, Gif-sur-Yvette, France
  • A. Chancé
    CEA, Gif-sur-Yvette, France
  • S. Cohen, I.G. Gertz, N. Goldberger, H. Isakov, B. Kaizer, A. Kreisel, J. Luner, I. Mardor, H. Paami, A. Perry, I. Polikarpov, E. Reinfeld, J. Rodnitsky, I. Shmuely, A. Shor, Y. Solomon, N. Tamim, R. Weiss-Babai, L. Weissman, T. Zchut
    Soreq NRC, Yavne, Israel
  • G. Desmarchelier, N. Solenne
    CEA-DRF-IRFU, France
 
  IAEC/SNRC (Is­rael) is con­struct­ing an ac­cel­er­a­tor fa-cil­ity, SARAF, for neu­tron pro­duc­tion. It is based on a linac ac­cel­er­at­ing 5 mA CW deuteron and pro­ton beam up to 40 MeV. As a first phase, IAEC con­structed and op­er­ated a linac (SARAF Phase I), from which re­mains an ECR ion source, a Low-En­ergy Beam Trans­port (LEBT) line and a 4-rod RFQ. Since 2015, IAEC and CEA (France) are col­lab­o­rat­ing in the sec­ond phase, con­sist­ing in man­u­fac­tur­ing of the linac (Fig­ure 1). The in­jec­tor con­trol-sys­tem has been re­cently up­dated and the Medium En­ergy Beam Trans­port (MEBT) line has been in­stalled and in­te­grated to the in­fra­struc­ture. It has been par­tially com­mis­sioned dur­ing the first se­mes­ter of 2022. This paper pre­sents the re­sults of the in­te­gra­tion, tests and com­mis­sion­ing of the in­jec­tor and MEBT, be-fore de­liv­ery of the cry­omod­ules.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides FR1AA04 [2.971 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-FR1AA04  
About • Received ※ 21 August 2022 — Revised ※ 27 August 2022 — Accepted ※ 14 September 2022 — Issue date ※ 15 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1AA05 Design Considerations for a Proton Linac for a Compact Accelerator Based Neutron Source 878
SUPCJO01   use link to see paper's listing under its alternate paper code  
 
  • M. Abbaslou
    UVIC, Victoria, Canada
  • A. Gottberg, O.K. Kester, R.E. Laxdal, M. Marchetto
    TRIUMF, Vancouver, Canada
  • D.D. Maharaj, D. Marquardt
    University of Windsor, Windsor, Ontario, Canada
  • S. Tabbassum
    Purdue University, West Lafayette, Indiana, USA
 
  New neu­tron sources are needed both for Canada and in­ter­na­tion­ally as ac­cess to re­ac­tor based neu­trons shrinks. Com­pact Ac­cel­er­a­tor-based Neu­tron Sources (CANS) offer the pos­si­bil­ity of an in­tense source of pulsed neu­trons with a cap­i­tal cost sig­nif­i­cantly lower than spal­la­tion sources. In an ef­fort to close the neu­tron gap in Canada a pro­to­type, Cana­dian com­pact ac­cel­er­a­tor-based neu­tron source (PC-CANS) is pro­posed for in­stal­la­tion at the Uni­ver­sity of Wind­sor. The PC-CANS is en­vis­aged to serve two neu­tron sci­ence in­stru­ments, a boron neu­tron cap­ture ther­apy (BNCT) sta­tion and a beam­line for flu­o­rine-18 ra­dioiso­tope pro­duc­tion for positron emis­sion to­mog­ra­phy (PET). To serve these di­verse ap­pli­ca­tions of neu­tron beams, a lin­ear ac­cel­er­a­tor so­lu­tion is se­lected, that will pro­vide 10 MeV pro­tons with a peak cur­rent of 10 mA within a 5% duty cycle. The ac­cel­er­a­tor is based on an RFQ and DTL with a post-DTL pulsed kicker sys­tem to si­mul­ta­ne­ously de­liver macro-pulses to each end-sta­tion. Sev­eral choices of Linac tech­nol­ogy are being con­sid­ered and a com­par­i­son of the choices will be pre­sented.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides FR1AA05 [1.945 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-FR1AA05  
About • Received ※ 27 August 2022 — Revised ※ 29 August 2022 — Accepted ※ 31 August 2022 — Issue date ※ 03 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1AA06 Fully Automated Tuning and Recover of a High Power SCL 884
 
  • A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
  • C.C. Peters
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
Tech­niques have been de­vel­oped for fast (less than one hour), fully au­to­mated tune-up a high power pro­ton SCL, as well as fully au­to­mated re­cov­ery from a cav­ity fail­ure with no human in­ter­ven­tion. These meth­ods have been de­vel­oped and demon­strated at the SNS SCL but are ap­plic­a­ble to hadron SCL op­er­a­tion in gen­eral and will be es­pe­cially rel­e­vant to fu­ture ADS ap­pli­ca­tions
 
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides FR1AA06 [1.112 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2022-FR1AA06  
About • Received ※ 23 August 2022 — Revised ※ 26 August 2022 — Accepted ※ 01 September 2022 — Issue date ※ 04 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)