

CSNS-II superconducting linac design

Jun Peng

On behalf of the CSNS Accelerator Team & Collaboration Dongguan Campus, IHEP

Special thanks to: Yu-liang Zhang, Wen-zhou Zhou, Zhi-ping Li, Xin-yuan Feng, Yan-liang Han Linac 2022, 2 Sept. 2022

Outlines

Accelerator status

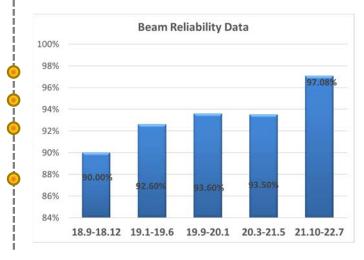
Design of the superconducting linac

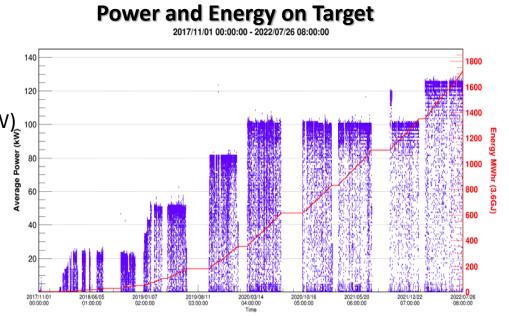
Summary

CSNS overview

The CSNS facility consists of an 80-MeV H- linac, a 1.6GeV rapid cycling synchrotron(RCS), beam transport lines, a target station, and 3 spectrometers.

Project Phase	I	I	50keV 3 MeV II- 15 RFQ 80MeV
Beam Power on target [kW]	100	500	Ip-26mA
Proton energy [GeV]	1.6	1.6	324MHz 324MHz
Average beam current [µA]	62.5	312.5	LEBT
Macropulse.ave current[mA]	15	40	RCS
Macropulse duty factor	1.0	1.7	≣ 1.6GeV,62.5µA,25Hz ≣
Linac energy [MeV]	80	300	, a la l
Linestype		Spoke+	Neutron instruments
Linac type	DTL	Elliptical	RTBT
Target	1	1	Target station
Spectrometers	3	20	S 1

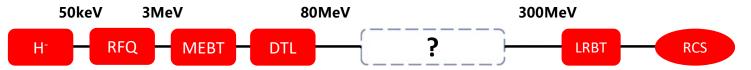



CSNS accelerator performance

-Data from Yu-liang Zhang

Key milestones(On schedule)

 2015 start beam commissioning
2017 first beam on target
2018 end of beam commissioning start operation for user program(20kW)
2020 Reach full power(100kW)


- The accelerator routinely operates with >90% availability in recent years
- From October 2021 to July 2022, the beam availability has been improved to more than 97%.

CSNS Linac Status With 50% chopping **CT** Display 流强显示 **₫** MH 2020-05-25 08:06:29 ** **** ********* LEBT CT01 32.63 **RTBT CT02** 1.585 E13 mA LEBT CT02 0.83 **RTBT CT03** 1.587 E13 mA MEBT CT01 6.56 **MEBT Trans** 100.3 % mA MEBT CT02 6.58 **DTL Trans** 99.6 % mA 6.55 **LRBT** Trans 100.2 LRBT CT01 % mA **EXT Trans** LRBT CT02 6.54 100.5 % mA LEBTCT01 32.9515 mA 83.75 E12 LRBTCT01 6.6742 16.62 E12 DCCT-INJ 16.3941 E12 RTCT01 16.1199 E12 LRBT CT03 **RCS** Trans 6.57 98.5 % mA MERTCT01 16.61 F12 LEBTCT02 F12 DOCT-EXT 16.0719 E12 ROCT01 0.0169 E12 MEBTCT02 16.0712 E12 6 71 27 16.67 E12 LEBICTOR SCT-INJ 16.2668 E12 RTCT02 **RTBT Trans** 16.6268 £12 DCCT-INJ 1.608 E13 99.7 % DTLCT01 18.07 E12 LDBTCT01 0.0233 SCT-EXT 15.9685 E12 16.1000 E12 7.1293 0.0605 E13 RTCTOS DTLCT02 6.6821 mA 16.58 E12 MCT-INJ 16.4271 E12 DCCT-EXT 1.584 Linac Energy E13 80.271 MeV 6.7018 mA 16.62 E12 15.6262 E12 DTLCT03 MCT-EXT **RTBT CT01 Beam Power** 1.591 E13 101.44 kW FCT System LINAC BLM 2020-05-25 08:07:43 **BPM System** MEBLM01 LRBLM09 LDBLM03 2.69 121.09 11.52 Phase Amplit Phase Amplit Phase Ampli Phase MEBLM02 39.65 LRBLM10 -3.91 LDBLM04 5 101.757 DTLFCT01 41 11160 175.31390 **EBTECTOS** LRBTFCT01 MEBLM03 37.93 LRBLM11 -1.51 LDBLM05 48.19 DTLFCT02 PETECTO 1028.04 LRBLM12 T01BLM01 4.54 3.44 10300,402 全田 DTLECTOR T01BLM02 15.28 LRBLM13 4.87 -0481.405 LESTERMO T01BLM03 172.28 LRBLM14 11.4 7.807300 TC-INLMO T02BLM01 LDBLM02 36.4 LRBTFCT05 5.487800 MERTECTOS T02BLM02 46.94 LDBLM01 **Activation level:** T02BLM03 LRBLM15 80.39 能量计算 BPM 计算能量 LINELINGS 1027 T03BLM01 LRBLM16 64.65 T03BLM02 43.4 LRBLM17 1 · <7mrem/hr@30cm T03BLM03 96.38 LRBLM18 II SALAR Measured energy: 80.3MeV I LABLHON T048LM01 238.81 LRBLM19 EnergySelect3 I BICT ----ULU-09 T04BLM02 57.83 LRBLM20 T04BLM03 LRBLM21 88.73 Design energy: 80.1MeV LRBLM01 41.74 LRBLM22 30.3 LRBLM02 LRBLM23 172.23 21.81 计算能量值 80.273770 MeV LRBLM03 8.18 INBLM01 LRBLM04 10.87 INBLM02 215.41 LRBLM05 INBLM03 95.4 1.66 EnergySelectENER2/0-3 , 002/08 20MeV, 40MeV, 60MeV, 80MeV LRBLM06 13.13 INBLM04 9.28 0 100 200 100 400 500 600 700 800 900 9 Primary X.Auto (f) LRBLM07 22.91 INBLM05 LRBLM08 3.44 INBLM06 8.46

Options of linear accelerator for CSNS ||

Main constraints:

- The tunnel length reserved for linac energy upgrade is 92m.
- To reduce space-charge effect in the RCS, beam energy output from the linac should be more than 300MeV.

The energy gain per meter>2.4MeV/m

Special requirements for linac energy upgrade

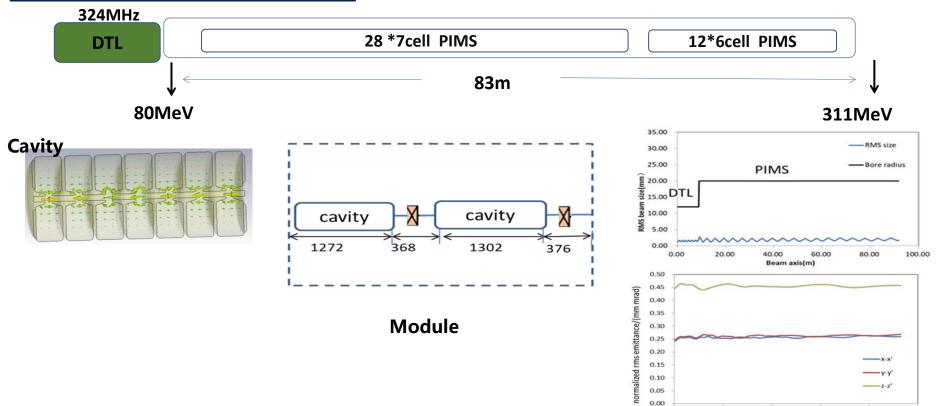
- \diamond Stable output beam energy, energy jitter $\Delta E/E < 0.04\%$
- \diamond High availability (>95%)
- ♦ Quick installation, device and beam commissioning, recover user operation
- ♦ Technical risk/local expertise

Mini Workshop on CSNS Upgrade Program Sept. 20, 2018, Beijing, China

Scheme 1, Pi mode structure

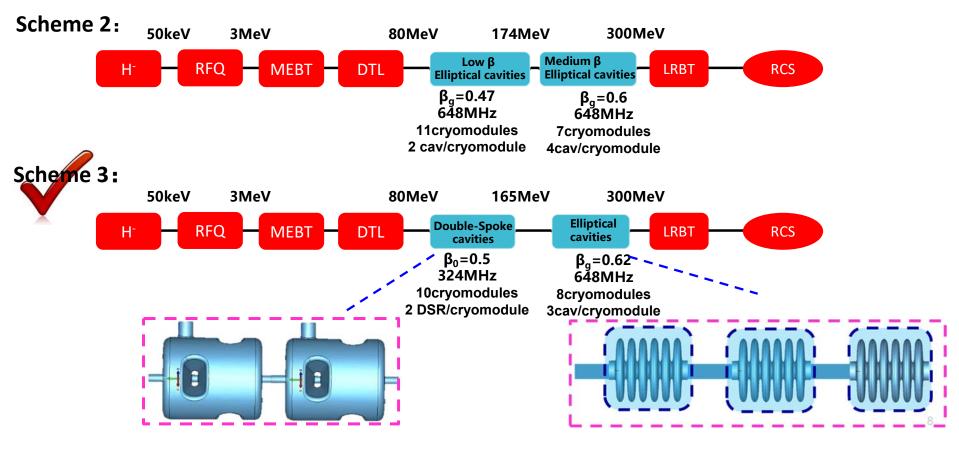
20.00

0.00

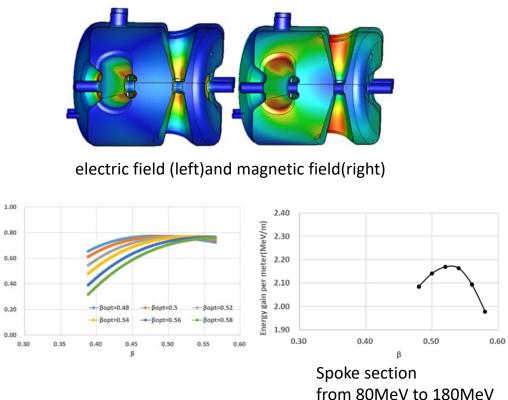

40.00

60.00

beam axis/m

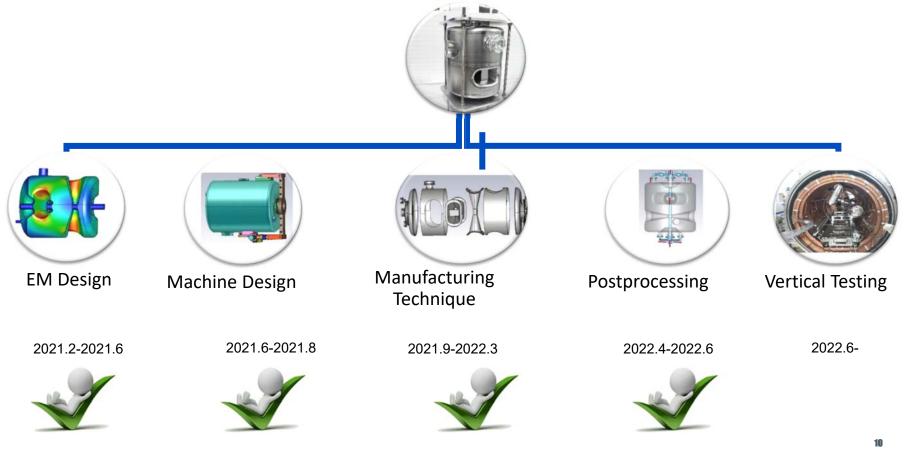

80.00

100.00



Superconducting linac

Spoke cavities for CSNS II linac

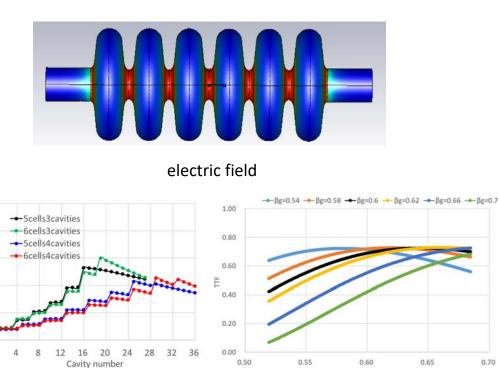

Ë

The Main Parameters

Parameter	Design value
Frequency(MHz)	324
Beam tube aperture (mm)	50
Ep/Eacc	4.1
Bp/Eacc(mT/MV/m)	9.2
β _o	0.5
G(Ω)	120
R/Q(Ω)	410
Eacc(MV/m)	9

-Data from Wen-Zhong Zhou

Status of Prototyping



Elliptical cavities for CSNS II linac

0.70

β

6 cells per cavity, 3 cavities per cryomodule

20

16

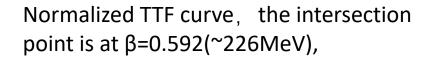
12

8

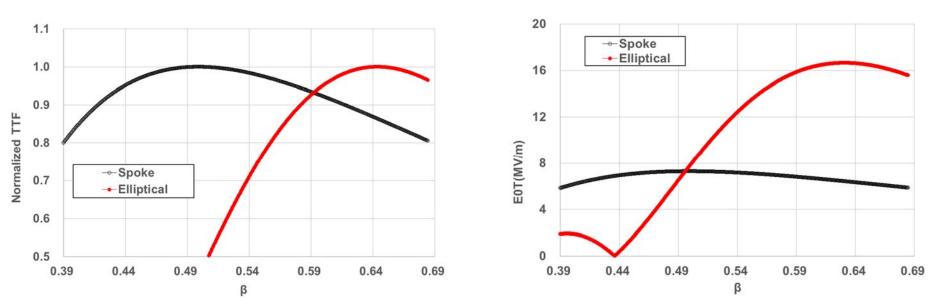
4

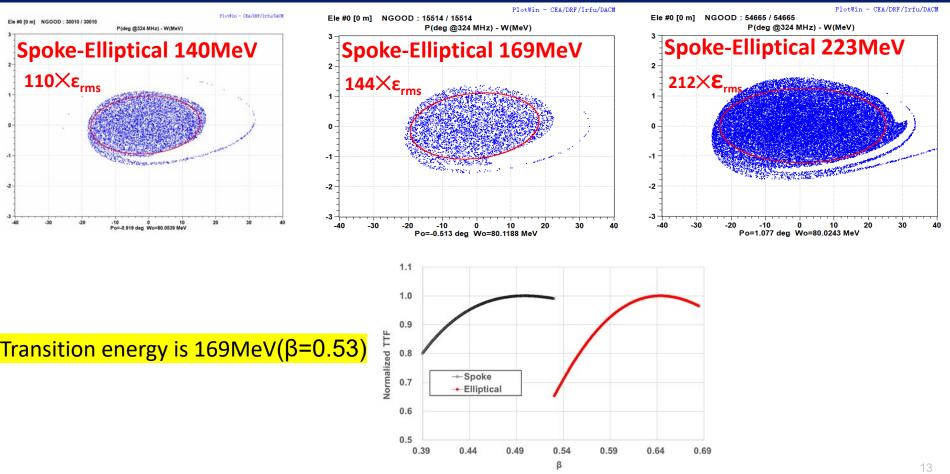
0 0

Energy gain per cavity (MeV)

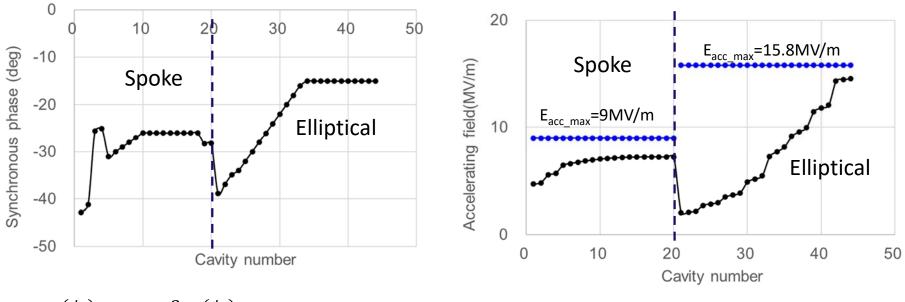

The Main Parameters

Parameter	Design value	
Frequency(MHz)	648	
N cell	6	
βg	0.62	
Beam aperture(mm)	105/120	
R/Q (βg) (Ω)	309	
Ep/Eacc (βg)	2.53	
Bp/Eacc(βg) (mT/(MV/m))	5.53	
G(Ω)	177	
Coupling Kcc%	1.35	
Eacc(MV/m)	15.8	

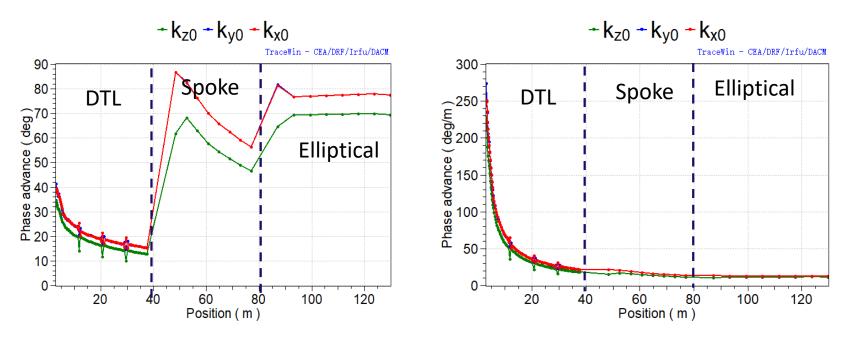

-Data from Wen-Zhong Zhou


Spoke – Elliptical energy transition

Accelerating field curve, the intersection point is at β =0.496(~142MeV)

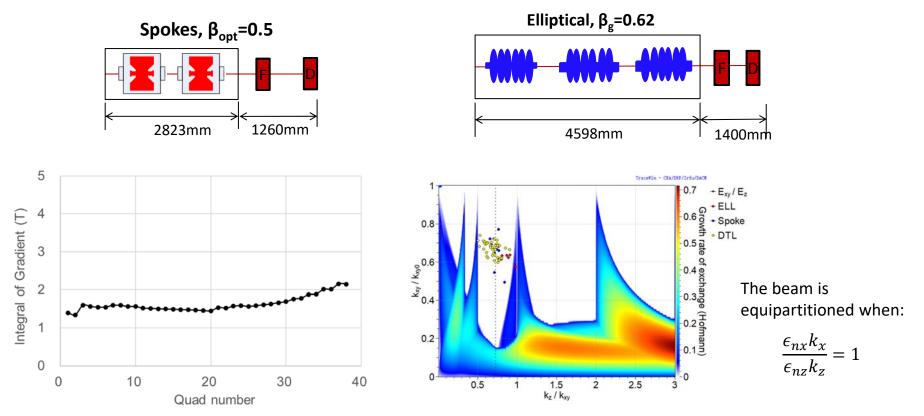


Beam dynamics- ϕ_s and E_{acc}

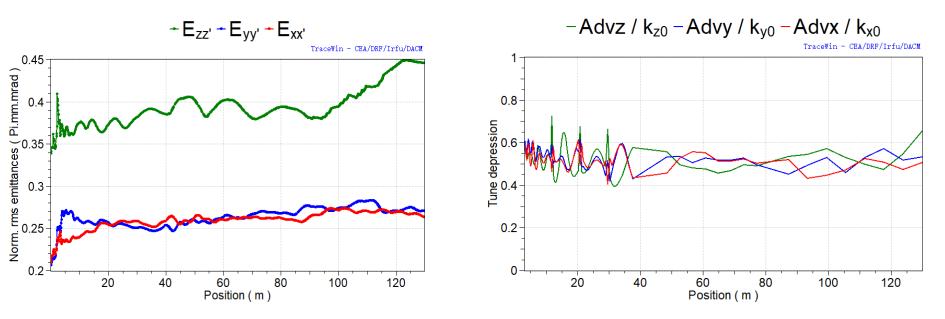


$$(\phi_s)_{648MHz} = 2 \times (\phi_s)_{324MHz}$$

 $k_{l0}^{2} = \frac{2\pi q E_{0} T sin(-\phi_{s})}{mc^{2}\beta_{s}^{3}\gamma_{s}^{3}\lambda}, \quad maximum \ variation \ per \ period < 2deg/m$

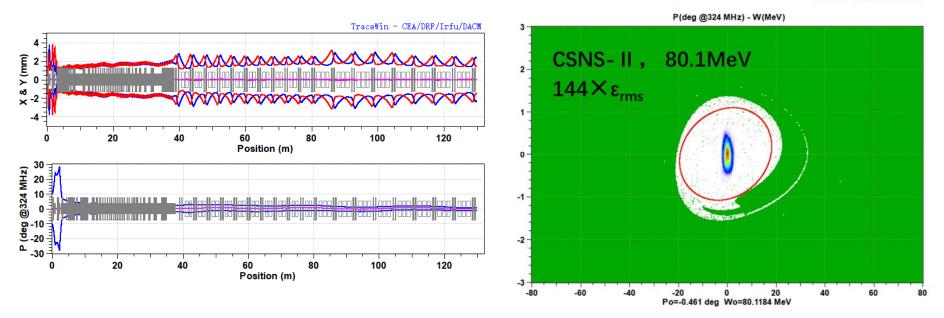

Beam dynamics-phase advance

- Maximum zero-current phase advance per period is less than 90 degrees to avoid parametric resonances.
- Average phase advance per meter must be continuous.



Beam dynamics-*lattice design*

Beam dynamics-*Emittance*



- •The RMS emittance growth through MEBT+DTL+Spoke+Elliptical is 26% (horizontal), 32% (Vertical) and 32% (longitudinal).
- •Tune depression is bigger than 0.4

PlotWin - CEA/DRF/Irfu/DACM

Beam dynamics-Acceptance

- In the normal conducting linac, the bore radius/RMS beam size is over 5.5.
- In the superconducting linac , the bore radius/RMS beam size is over 8.5.

For the superconducting linac, the longitudinal acceptance is more than 144 times the area of the matched rms beam emittance at spoke injection.

Error studies

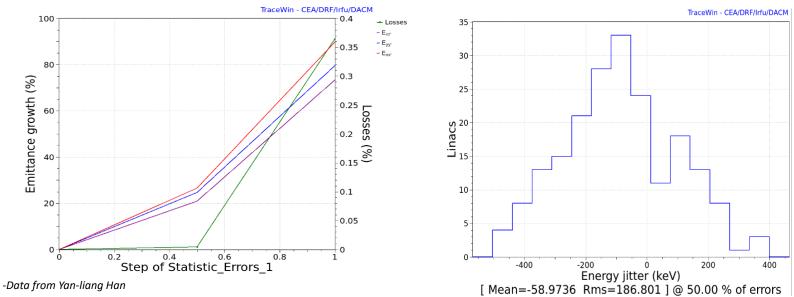
- The start-to-end error analysis is performed (MEBT, DTL, SC Linac)
 - Beam error from RFQ
 - MEBT & DTL
 - Super-Conducting Linac
- Nominal & 2*Nominal Errors are studied

Cavity & Quads Errors from the MEBT and DTL

Errors		Values	
		Cavity	Quads
Trans. Offset	riangle X, $ riangle Y$ (mm)	0.05	0.05
Angle	Rx, RY, Rz (mrad)	3	3
Gradient	∆G (%)	1	1
Phase	rianglephi (deg)	1	
Long. Offset	rianglez (mm)	0.1	

Beam Errors @ RFQ Output

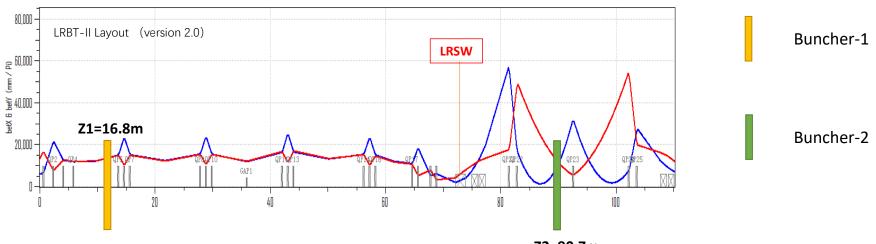
Errors		Values
Trans. Offset	riangleX, $ riangle$ Y (mm)	0.5
Angle	riangle X', riangle Y' (mrad)	1
Phase	riangle phi (deg)	1
Energy	riangle E(MeV)	0.01
Emittance	\triangle EmitX, \triangle EmitY, \triangle EmitZ	10%


Cavity & Quads Errors from the SC linac

Errors		Values	
		Cavity	Quads
Trans. Offset	riangle X, $ riangle Y$ (mm)	1	0.1
Angle	Rx, RY, Rz (mrad)	2	2
Gradient	∆G (%)	0.5	0.5
Phase	riangle phi (deg)	0.5	
Long. Offset	rianglez (mm)	0.5	0.5

Error Analysis Results

- Emittance growth rates are about 25%
- Beam loss rates are <0.01%
- RMS Energy jitters are 187keV(0.063%@300MeV) . (Debunchers are needed to compress the energy jitter)



Study of Debuncher System for CSNS-II Linac

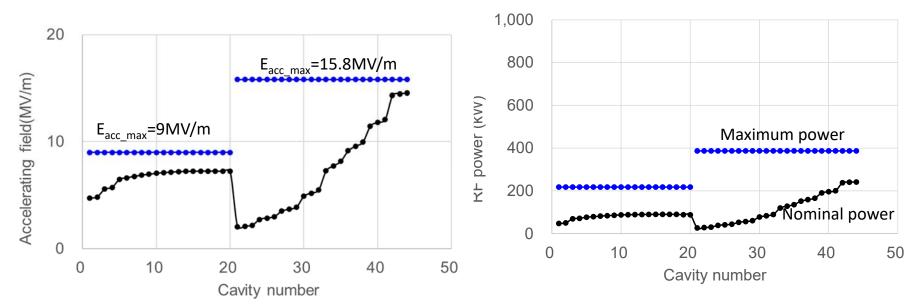
-Data from Zhi-ping Li

2-Cavity Debuncher System

Principle:

- 1. Small Aperture
- 2. Small *L1/L2*
- 3. Voltage of debuncher available(L1 not too small)

Z2=90.7m


Momentum Jitter Compactor Ratio:

$$\delta_{p1}/\delta_{p0} = -\frac{l_1}{l_2} \sim -\frac{1}{4}$$

21

Fault-compensation scheme for CSNS II linac

- The accelerating fields have about 25% margins for fault-recovery.
- The RF powers have nearly 100% margins for fault-recovery.
- The cavities are powered independently for retuning the ϕ_s and the E_{acc} .

Summary

- The CSNS is operating reliably at 125kW and is launching the power upgrade project.
- A superconducting linac has been designed for the CSNS power upgrade project.
 - The prototype of spoke cavity is under vertical testing. The design of the elliptical cavity begins.
 - 2 cavity debuncher system is adopted to compress the energy jitter.
 - A fault-compensation scheme is used to keep the linac energy stable. Dedicated algorithm is under developing.

Thanks For Your Attention!

FREE