Keyword: scattering
Paper Title Other Keywords Page
MOPO010 JINR Photocathode Research: Status and Plans cathode, electron, laser, gun 62
 
  • M.A. Nozdrin, N. Balalykin, J. Huran, V.F. Minashkin, G. Shirkov
    JINR, Dubna, Moscow Region, Russia
  • E. Gacheva, A. Poteomkin, V. Zelenogorsky
    IAP/RAS, Nizhny Novgorod, Russia
  • J. Huran
    Slovak Academy of Sciences, Institute of Electrical Engineering, Bratislava, Slovak Republic
 
  Photocathode research in the frame of the "transmission" photocathode conception (backside illuminated cathode based on a quartz/sapphire plate or a metal mesh which is a substrate for thin film made of a photomaterial) is being conducted in the Veksler and Baldin Laboratory of High Energy physics (LHEP) of the Joint Institute for Nuclear Research (JINR). Status of the 30-kev DC Photogun test bench and recent results of the extremely thin carbon film based cathodes research are described. Progress in the full-scale photoinjector prototype (max electron energy of 400 keV) is given. Startup of the photoinjector was performed, 70 keV electrons were extracted (650 pC).  
poster icon Poster MOPO010 [1.564 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO010  
About • paper received ※ 11 September 2018       paper accepted ※ 19 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPO127 Recent Results from MICE on Multiple Coulomb Scattering and Energy Loss emittance, simulation, detector, radiation 267
 
  • J.Y. Tang
    IHEP, Beijing, People’s Republic of China
  • J.C. Nugent
    University of Glasgow, Glasgow, United Kingdom
 
  Funding: STFC, DOE, NSF, INFN, CHIPP and more
Multiple Coulomb scattering and energy loss are well known phenomena experienced by charged particles as they traverse a material. However, from recent measurements by the MuScat collaboration, available simulation codes (GEANT4, for example) are known to overestimate the scattering of muons in low Z materials. This is of particular interest to the Muon Ionization Cooling Experiment (MICE) collaboration which has the goal of measuring the reduction of the emittance of a muon beam induced by energy loss in low Z absorbers. MICE took data without magnetic field suitable for multiple scattering measurements in the fall of 2015 with the absorber vessel filled with xenon and in the spring of 2016 using a lithium hydride absorber. In the fall of 2016 MICE took data with magnetic fields on and measured the energy loss of muons in a lithium hydride absorber. These data are all compared with the Bethe-Bloch formula and with the predictions of various models, including the default GEANT4 model.
Submitted by the MICE speakers Bureau. If accepted a member of the collaboration will be selected for the mission
 
poster icon Poster MOPO127 [0.842 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO127  
About • paper received ※ 19 September 2018       paper accepted ※ 31 October 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO092 Beam Dynamics and Collimation Following MAGIX at MESA* target, electron, simulation, radiation 540
 
  • B. Ledroit, K. Aulenbacher
    IKP, Mainz, Germany
 
  Funding: * Supported by the DFG through GRK 2128
The Mainz Energy-recovering Superconducting Accelerator (MESA) will be an electron accelerator allowing operation in energy-recovery linac (ERL) mode, where beam energy is recovered by decelerating the beam in linac cryomodules and transferring kinetic energy to the RF. The ERL mode provides the opportunity to operate experiments at peak energy with thin targets, combining high luminosities typical for storage rings and high beam brightness typical for linacs. The MESA Internal Gas Target Experiment (MAGIX) aims to operate jet targets at high luminosities with different gases up to Xenon. As scattering effects in the beam rise with the atomic number, investigations on the impact of the target on beam dynamics and beam losses are required for machine safety. The goal of this work is to understand target induced halo, track halo particles through downstream sections and protect the machine with a suitable collimation system and shielding from direct and indirect damage through beam losses and radiation. The present status of the investigations is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO092  
About • paper received ※ 11 September 2018       paper accepted ※ 19 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1A01 First Ever Ionization Cooling Demonstration in MICE emittance, experiment, detector, electron 632
 
  • J.Y. Tang
    IHEP, Beijing, People’s Republic of China
 
  Funding: STFC, DOE, NSF, INFN, CHIPP and more
The Muon Ionization Cooling Experiment (MICE) at RAL has studied the ionization cooling of muons. Several million individual particle tracks have been recorded passing through a series of focusing magnets in a number of different configurations and a liquid hydrogen or lithium hydride absorber. Measurement of the tracks upstream and downstream of the absorber has shown the expected effects of the 4D emittance reduction. This invited talk presents and discusses these results, and projects the future of ionization cooling.
Abstract submitted by the speakers bureau of the MICE Collaboration. If accepted, a member of the collaboration will be selected to present the contribution
 
slides icon Slides TH1A01 [6.524 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TH1A01  
About • paper received ※ 19 September 2018       paper accepted ※ 31 October 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO090 The Analysis of Module Failure in High Solid-state Amplifier for High Current RFQ simulation, experiment, rfq, cavity 886
 
  • L.P. Sun, Y. He, G. Huang, C.X. Li, L. Lu, A. Shi, L.B. Shi, X.B. Xu, H.W. Zhao
    IMP/CAS, Lanzhou, People’s Republic of China
 
  New accelerator RF system was upgraded to the solid-state amplifier in ADS project due to its stable, sustainable and reliable. Until now, newest 80kW SSA was adopted in IMP, operating in 162.5MHz, and over 120 power modules were combined through several synthesizers for 80kW output. but since too many modules were optimized for amplitude and phase in the same time, one or some failure of circulator will lead to injure of whole RF system, when wavelength meets a specific condition, injure would turn out severe accident and heavy loss. In this paper, analyzing and simulating the multi-level synthetic matrix was the important method for ADS accident happened in June 20. 2017, the failure simulated results for RF amplify links under the specific circumstances also was presented simultaneously.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO090  
About • paper received ※ 17 September 2018       paper accepted ※ 31 October 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)