Author: Yoon, J.Y.
Paper Title Page
TUPO051 Design Considerations of a Balloon-shaped SSR Superconducting Cavity 448
 
  • H.J. Cha, S.W. Jang, E.-S. Kim, K.R. Kim, S. H. Park, J.Y. Yoon
    Korea University Sejong Campus, Sejong, Republic of Korea
 
  A single spoke resonator (SSR, β = 0.51 and f = 325 MHz) is being developed at Korea University. It is well-known that a traditional spoke cavity having flat or round end walls has broad multipacting ranges in acceleration gradient, sometimes including operation region. In general, quite long conditioning time is consumed to overcome such multipacting barriers. In this study, we introduce a balloon-shaped SSR superconducting cavity for the multipacting mitigation due to structural simplicity. The electromagnetic modeling of the SSR was made based on the RF parameter optimization. The simulation results show much narrower multipacting bandwidth, compared to those for the traditional spoke cavity. Mechanical analyses with stiffening structure at maximum allowable working pressures indicate acceptable stresses at the SSR cavity wall. In addition, the resonant frequency shifts due to fabrication and processing for cold tests are predicted and power coupling and tuning mechanism are also investigated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO051  
About • paper received ※ 10 September 2018       paper accepted ※ 20 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO052 Design Study of a Prototype 325MHz RF Power Coupler for Superconducting Cavity 451
 
  • J.Y. Yoon, J.B. Bhang, H.J. Cha, S.W. Jang, E.-S. Kim, K.R. Kim, C.S. Park, S. H. Park
    Korea University Sejong Campus, Sejong, Republic of Korea
  • E. Kako
    KEK, Ibaraki, Japan
  • D.Y. Kim, J. Lee
    Vitzrotech Co., Ltd., Ansan City, Kyunggi-Do, Republic of Korea
  • I. Shin
    IBS, Daejeon, Republic of Korea
 
  Funding: Korea University (Sejong Campus) in South KOREA
We present design studies of a prototype RF input power coupler, which provides RF powers to 325MHz cavities up to 18.5 kW in CW mode. The prototype power coupler is a coaxial capacitive type with single ceramic window. In order to optimize the RF coupler design, we performed multi-physics simulations, including electromagnetic, thermal, and mechanical analyses.
 
poster icon Poster TUPO052 [1.607 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO052  
About • paper received ※ 12 September 2018       paper accepted ※ 19 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)