Author: Nii, K.N.
Paper Title Page
TUPO067 Study on New Removal Thickness Distribution Improvement Methods for Niobium 9-cell Cavity Vertical Electropolishing with Ninja Cathode 488
 
  • K.N. Nii, V. Chouhan, Y.I. Ida, T.Y. Yamaguchi
    MGH, Hyogo-ken, Japan
  • H. Hayano, S. Kato, H. Monjushiro, T. Saeki, M. Sawabe
    KEK, Ibaraki, Japan
 
  Marui Galvanizing Co., Ltd. has been developing niobium 9-cell cavity vertical electropolishing (VEP) technologies with Ninja cathode in collaboration with KEK. Conventional 9-cell cavity VEP had a serious problem, which was asymmetry of removal thickness distribution. Usually removal thickness of upper side became larger than lower side in case of both in-cell and inter-cell. So far, as one solution, we proposed bubble diffusion prevention method and proved it was effective for uniform removal. This time, as other new solution, we tried cavity flip upside down and Ninja cathode masking VEP methods. In this article we will report the purpose, intention and VEP experiment result of these methods.  
poster icon Poster TUPO067 [0.858 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO067  
About • paper received ※ 13 September 2018       paper accepted ※ 21 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO068 Vertical Electropolishing of 1.3 GHz Niobium Nine-cell SRF Cavity: Bulk Removal and RF Performance 491
 
  • V. Chouhan, Y.I. Ida, K.N. Nii, T.Y. Yamaguchi
    MGH, Hyogo-ken, Japan
  • H. Hayano, S. Kato, H. Monjushiro, T. Saeki, M. Sawabe
    KEK, Ibaraki, Japan
  • H. Ito
    Sokendai, Ibaraki, Japan
  • H. Oikawa
    Utsunomiya University, Utsunomiya, Japan
 
  Vertical electropolishing (VEP) technique have been successfully developed for 1.3 GHz niobium (Nb) single cell cavity to achieve a smooth surface with uniform removal and better RF performance as achieved after horizontal EP (HEP) process. VEP parameters for 1.3 GHz Nb nine-cell cavities are being studied using a nine-cell coupon cavity and our unique Ninja cathode. The investigated VEP parameters heretofore were applied on a 1.3 GHz Tesla shape nine-cell superconducting RF cavity for bulk removal of 100 µm followed by fine removal of 20 and 10 µm. The interior surface was found to be smooth and shiny after the VEP process. Our recently developed dual flow technique, in which the EP acid is flown separately in the Ninja cathode housing and cavity, yielded lower asymmetry in removal along the cavity length. The cavity was tested in a vertical cryostat after the final VEP process. The cavity achieved 28.3 MV/m at Q0 value of 6.7x109. The cavity performance was almost the same as in the baseline vertical test performed after the HEP process.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO068  
About • paper received ※ 13 September 2018       paper accepted ※ 19 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO069 Development of Vertical Electropolishing Facility for Nb 9-cell Cavity (2) 494
 
  • Y.I. Ida, V. Chouhan, K.N. Nii
    MGH, Hyogo-ken, Japan
  • T. Akabori, G.M. Mitoya, K. Miyano
    HKK, Morioka, Japan
  • Y. Anetai, F. Takahashi
    WING. Co.Ltd, Iwate-ken, Japan
  • H. Hayano, S. Kato, H. Monjushiro, T. Saeki, M. Sawabe
    KEK, Ibaraki, Japan
 
  In IPAC18 (Vancouver, Canada), we reported our first step of development of niobium 9-cell cavity vertical electropolishing (VEP) facility. In this article, we will report the method, system for uniform polishing for niobium 9-cell cavities and the current situation of our 9-cell cavity VEP facility (The result of polishing uniformity, vertical test will be presented in other posters of this conference). In addition, we will show the movie of experiments of VEP-3 with Ninja cathode. This facility aims not only for test VEP but also for mass production and long-time operation.  
poster icon Poster TUPO069 [0.316 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO069  
About • paper received ※ 13 September 2018       paper accepted ※ 19 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)