Paper | Title | Other Keywords | Page | ||
---|---|---|---|---|---|
TUP003 | Spallation Neutron Source Linac Beam Position and Phase Monitor System | linac, SNS, controls, instrumentation | 247 | ||
|
The SNS linac currently has 6x beam position monitors which allow the measurement of both beam position and phase from a single pickup. The signals from the pickup lobes are down converted from either 402.5MHz or 805 MHz to 50-MHz IF signals for processing. The IF signals are synchronously sampled at 40 MHz to generate I and Q signals from which the beam position and phase are calculated. Each BPM sampling reference frequency is locked to a phase-stable 2.5 MHz signal distributed along the linac. The system is continuously calibrated by generating and measuring rf bursts in the processor that travel to the BPM pickup, reflect off of the shorted BPM lobes and return to the processor for re-measurement. The electronics are built in a PCI card format and controlled vith LabVIEW. Details of the system design and performance are presented.
|
|
|
||
TUP020 | The J-PARC L3BT Monitor System for RCS Injection | injection, linac, electron, beam-losses | 290 | ||
|
The J-PARC linac-3GeV rapid cycling synchrotron (RCS) beam transport line (L3BT) monitor system will be used to tune the intensity of 5mA-50mA linac beam. The monitor system is composed of BPMs and multi wire profile scanners (MWPS) in L3BT line and RCS injection area. A non-destructive beam momentum spread monitor using a 4-stripline pickups is also developed in order to measure and control the momentum spread of linac beams. The spatial resolution of less than 0.3mm and momentum spread of less than 0.1% is required for RCS injection to avoid uncontrolled beam losses. In this paper, beam position monitor, profile monitor and momentum spread measurement for J-PARC linac is described. Preliminary results of beam size and m value measurement with quadrupole mode of the signal of 4-stripline BPMs in the KEK MEBT1 are also discussed.
|
|
|
||
TUP025 | Optimization of Surface Treatment of High-Gradient Single-Cell Superconducting Cavities at KEK | superconductivity, vacuum, cryogenics, electron | 299 | ||
|
We have continued the study of a series of single cell superconducting cavities at KEK. These tests are aimed at establishing a prescription for a surface treatment that would reliably allow cavities to reach gradients in excess of 45 MV/m in vertical tests. The cavity profiles were all of the KEK Low Loss design, and were fabricated from deep drawn Niobium half shells using electron beam welding. The cavity initial surface preparation followed an established KEK procedure of centrifugal barrel polishing, high temperature annealing, light chemical polishing, electropolishing. and final a high pressure water rinse. Early results from this series test demonstrated that reaching gradients as high as 50 MV/m is feasible. However, the initial yield was of order 50%. In this paper we will discuss our studies of further improvement of the surface treatment aimed at increasing the yield.
|
|
|
||
TUP032 | Comparison of SNS Superconducting Cavity Calibration Methods | SNS, acceleration, beam-loading, controls | 315 | ||
|
Three different methods have been used to calibrate the SNS superconducting cavity RF field amplitude. Two are beam based and the other strictly RF based. One beam based method uses time-of-flight signature matching (phase scan method), and the other uses the beam-cavity interaction itself (drifting beam method). Both of these methods can be used to precisely calibrate the pickup probe of a SC cavity and determine the synchronous phase. The initial comparisons of the beam based techniques at SNS did not achieve the desired precision of 1% due to the influence of calibration errors, noise and coherent interfaces in the system. To date the beam-based SC cavity pickup probe calibrations agree within approximately 4%, comparable to the conventional RF calibrations.
|
|
|
||
TUP033 | Performances of High-Purity Niobium Cavities with Different Grain Sizes | vacuum, superconductivity, linear-collider, collider | 318 | ||
|
Grain boundaries have for some time been suspected of influencing the performance of rf cavities made from high purity niobium by limiting the temperature dependent BCS surface resistance to a residual resistance because of impurity segregation and by causing field limitations due to flux penetration. We have carried out a comparative study of the rf behavior of 2.2 GHz TM010 cavities of identical shape, fabricated from single crystal niobium, niobium of grain sizes of the order of several cm2 and standard poly-crystalline material. This contribution reports about the results of the measurements of the temperature dependence of the surface resistance Rs(T) and the Q0 vs Eacc behavior at 2 K. From the analysis of the Rs(T) data at low rf fields material parameters such as gap value, mean free path and residual resistance could be extracted. The dependence of the Q-value on rf field was analyzed with respect to the medium field Q-slope, Q-drop at high fields and the quench fields. The best performance resulted in a breakdown field of ~ 165 mT, corresponding to an accelerating gradient of Eacc ~ 45 MV/m.
|
|
|
||
TUP035 | Investigation of Hot Spots as a Function of Material Removal in a Large-grain Niobium Cavity | vacuum, electron | 324 | ||
|
The performance of a single-cell cavity made of RRR > 200 large-grain niobium has been investigated as a function of material removal by buffered chemical polishing (BCP). Temperature maps of the cavity surface at 1.7 and 2 K were taken for each step of chemical etching and revealed several hot-spots, which contribute to the degradation of the cavity quality factor as a function of the radio-frequency (RF) surface field. It was found that number of hot-spots decreased for larger material removal. Interestingly, the losses of the hot-spots at different locations evolved differently for successive material removal. The cavity achieved peak surface magnetic fields of about of 130 mT and was limited mostly by thermal quench. By measuring the temperature dependence of the surface resistance at low field between 4.2 K and 1.7 K, the variation of material parameters such as the ratio between the energy gap and the critical temperature, the residual resistance and the mean free path as a function of material removal could also be investigated. This contribution shows the results of the RF tests along with the temperature maps and the analysis of the losses caused by the hot-spots.
|
|
|
||
TUP092 | Emittance Exchange at FNPL | emittance, coupling, klystron, electron | 478 | ||
|
An experiment to attempt the exchange of the transverse emittance with the longitudinal emittance of the Fermilab/NICADD PhotoInjector electron beam is being developed. The emittance exchange occurs by placing a TM110 mode RF cavity in the maximum dispersive region of a magnetic chicane. Properly employed, the cavity's longitudinal shearing Electric field zeros the momentum spread at the cost of generating a non-zero betatron oscillation amplitude. We report on the beam line modeling, beam line design, the RF cavity design, present status as well as the future program.
|
|
|
||
THP007 | Timing Distribution in Accelerators via Stabilized Optical Fiber Links | laser, controls, feedback, linac | 577 | ||
|
We present progress on fiber-optic based systems for highly stable distribution of timing signals for accelerators. This system has application for linac-based sources of ultrafast radiation which require sub-100 fsec synchronization or for very large accelerators such as the linear collider. The system is based on optical fiber links that are stabilized with an optical interferometer with RF and timing signals distributed as modulations on the optical carrier. We present measurements of the stability of this link over distances of several hundred meters and discuss issues for testing the link over 10 km.
|
|
|
||
THP012 | Adaptive Tuner Control in TRIUMF ISAC 2 Superconducting LINAC using Kalman Filter | controls, feedback, linac, superconducting-RF | 592 | ||
|
The TRIUMF ISAC 2 RF control system uses phase locking self-excited control. Amplitude, phase and frequency control is achieved with I/Q voltage injection, and forward RF power is minimized with a tuner feedback loop. The phase difference between the input coupler and the output pickup drives a velocity servo system to provide tuning control. However, the presence of microphonics in the cryomodule, although under control by the Quadrature loop, still presents a noisy interference on the phase difference for the tuner. The tuner will follow this noise and generate more microphonics as a result. A first-order Kalman filter is used for an estimation of the phase difference and reduces the movement of the tuner.
|
|
|
||
THP025 | R&D of the Long-Life Thyratron Tube | cathode, collider, controls, feedback | 622 | ||
|
Long lifetime over 50k hours for the thyratron is essential to provide the reasonable availability of the accelerator such as X-FEL and future e+e- linear collider. The lifetime and reliability of a solid-state device are not well confirmed yet. There are some examples that show long life of a thyratron. Many thyratrons were dead due to several common causes related to circuits and operation environment rather than intrinsic problems of a device itself. Several valuable feedback systems are easily adopted to enhance the lifetime. There are still unidentified questions to be verified in the thyratron. Close collaboration between laboratories and companies is strongly requested in order to improve the lifetime and performance of a thyratron.
|
|
|
||
THP058 | Proposed LLRF Improvements for Fermilab 201.25 MHz Linac | linac, beam-loading, feedback, coupling | 713 | ||
|
The Fermilab Proton Plan, tasked to increase the intensity and reliability of the Proton Source for 10 or more years of operation, has identified the Low Level RF (LLRF) system as the critical component to be upgraded in the Linac. The current 201.25 MHz Drift Tube Linac was designed and built over 30 years ago and does not meet the higher beam quality demands required under the new Proton Plan. Measurement data, used to characterize the system, has been collected as input for a new computer model of the system. This model shows what improvements can be made by replacing the LLRF system to improve beam quality. The model includes RF driver amplifiers, a 5 MW 7835 triode power amplifier, the high voltage switch tube modulator, and the drift tube cavity. Complete system gain and bandwidth characterization data has been collected for the 7835 triode power amplifier, modulator and RF driver stages. This model will be a useful analysis tool for present and future Linac system upgrades.
|
|
|
||
THP059 | Coaxial HOM Coupler Designs Tested on a Single-Cell Niobium Cavity | coupling, vacuum, simulation, damping | 716 | ||
|
Coaxial higher order mode (HOM) couplers have been developed for HERA cavities and are used in TESLA, SNS and Jlab upgrade cavities. The principle of operation is the rejection of the fundamental mode by the tunable filter of the coupler and the transmission of the HOMs. It has been recognized recently that inappropriate thermal designs of the feed through for the pick-up probe of the HOM coupler will not sufficiently carry away the heat generated in the probe tip by the fundamental mode fields, causing a built-up of the heating of the niobium probe tip and subsequently, a deterioration of the cavity quality factor has been observed in cw operation. An improvement of the situation has been realized by a better thermal design of the feed through incorporating a sapphire rf window [1]. An alternative is a modification of the coupler loop (F part) with an extension towards the pick-up probe. This design has been tested on a single cell niobium cavity in comparison to a standard TESLA configuration. by measuring the Eacc behavior at 2 K. The measurements clearly indicate that the modified version of the coupler loop is thermally much more stable than the standard version.
|
[1] C. Reece et al; http://accelconf.web.cern.ch/accelconf/, paper TPPT082 |
|
||
THP061 | High Field Test Results of Superconducting 3.9-GHz Accelerating Cavities at FNAL | simulation, resonance, linac, pulsed-power | 722 | ||
|
The XFEL facilities are planning to use section with a few third harmonic cavities (3.9GHz) to improve beam performance [1]. Fermilab is developing superconducting third harmonic section for the FLASH(TTF/DESY) upgrade. This section will include four cavities equiped with couplers and blade tuners installed in cryostat. Up to now, two cavities are completed and one of them is under vertical test. The gradient of the cavity was limited by multipactor in HOM coupler. The visual inspection of the HOM couplers after cold tests showed that both couplers were damaged. In paper we discuss the results of vertical tests, multipactoring analysis in HOM coupler and a new design for HOM coupler.
|
|
|
||
THP063 | First High-Power ACS Module for J-PARC Linac | linac, vacuum, ion, resonance | 725 | ||
|
J-PARC Linac will be commissioned with energy of 181-MeV using 50-keV ion source, 3-MeV RFQ, 50-MeV DTL and 181-MeV SDTL (Separated DTL) on December 2006. It is planed to be upgraded by using 400-MeV ACS (Annular Coupled Structure), in a few years from the commissioning. The first high-power ACS module, which will be used as the first buncher between the SDTL and the ACS has been fabricated, and a few accelerating modules are also under fabrication until FY2006. Detail of cavity design and tuning procedure has been studied with RF simulation analysis and cold-model measurements. This paper describes RF measurement results, fabrication status, and related development items.
|
|
|
||
THP064 | Tuning a CW 4-Rod RFQ | rfq, resonance, acceleration, vacuum | 728 | ||
|
A 4-Rod RFQ has been built, which operates cw and will accelerate 5mA D beams up to 3 MeV. The length of the structure is 3.8 m, the power consumption as high as 250 kW. The tuning of a 4-Rod RFQ with 30 rf-cells at the frequency of 175 MHz is difficult, so procedures have been developed, to facilitate this work. The properties of the RFQ accelerator, the tuning procedure and the status of the project will be discussed.
|
|
|
||
THP072 | Fabrication and Low-Power Measurements of the J-PARC 50-mA RFQ Prototype | rfq, laser, linac, vacuum | 749 | ||
|
In the Japan Proton Accelerator Research Complex (J-PARC) project, the beam commissioning of the H- linac will be started with a 30mA peak current. A 30mA type RFQ, which is developed for the former Japan Hadorn Facility (JHF) project, is used for the day-1 operation. However, it is required to accomplish the peak current of 50mA as soon as possible. For this purpose, we have developed an RFQ for the 50mA peak current, which is a four vane type RFQ and resonant frequency of which is 324MHz, same as the 30mA RFQ. In the R&D of this RFQ, we have adopted laser welding to join oxygen free copper blocks to be a cavity structure. The heat load of the laser welding can be more localized than that of the brazing, and the copper is not annealed, therefore, we think, it is possible to obtain more mechanical accuracy. We have developed a longitudinally 1/3 prototype cavity of the J-PARC 50mA RFQ. In this cavity, the distortion of the vane tips is measured to be less than 30 micro-meters, and the field uniformity of within 1% is obtained in a low power measurement after tuning. In this paper, we discuss about the fabrication and the low power measurement of this prototype cavity.
|
|
|
||
THP073 | High-Current Elliptical Cavity Design and Prototyping | vacuum, simulation, linac, injection | 752 | ||
|
Beam instabilities due to undamped higher-order modes (HOMs) in the cavities can limit the performance of high-current superconducting accelerators, such as energy recovery linacs. If the accelerator is designed such that the bunch frequency is equal to the accelerating mode frequency and the beam pipe radius is chosen such that the cutoff frequency is less than twice that of the accelerating mode, all of the monopole and dipole HOMs that can be driven by the beam can be well-damped. A 6-cell elliptical cavity for speed-of-light particles and a 2-cell elliptical injection cavity have been designed for high-current accelerator applications. Both cavities have an aperture 29% larger than the TeSLA cavity, at the expense of peak surface fields about 10% higher for the same gradient. The injection cavity has a geometric β of 0.81 and was designed to accelerate electrons from 50 keV to 1 MeV, and the 6-cell cavity has a geometric β of 1 for further acceleration. Both cavities are designed for the purpose of accelerating hundreds of milliamps without HOM-induced beam breakup and to operate at 2.45 GHz. The cavity designs and prototype injection cavity results will be presented.
|
|
|
||
THP075 | RF Performance of a Superconducting S-Band Cavity Filled with Liquid Helium | vacuum, superconductivity, radiation, controls | 755 | ||
|
Copper RF cavities filled with hydrogen gas at high pressure have been studied recently by Muons, Inc. and IIT for simultaneous acceleration and ionisation cooling of a muon beam. A further step in this direction would be a superconducting RF cavity filled with liquid helium. One might imagine that this would make the cavity less vulnerable to thermal breakdown, field emission, and multipacting. A disadvantage is that magnetostatic focussing of the beam could not be done simultaneously. Preliminary RF testing has been done on a 2.45 GHz single-cell elliptical cavity filled with liquid helium. Low-field results indicate little or no increase in the power dissipation, consistent with predictions and measurements in the literature. The frequency shift with pressure for a cavity filled with saturated liquid is about 100 times greater than for a cavity under vacuum, consistent with published values of liquid helium permittivity as a function of temperature. Investigation of the high-field performance of a liquid-filled cavity is in progress.
|
|
|
||
THP077 | A High-Gradient Test of a 30-GHz Copper Accelerating Structure | electron, linac, vacuum, acceleration | 761 | ||
|
The CLIC study is investigating a number of different materials at different frequencies in order to find ways to increase achievable accelerating gradient and to understand what are the important parameters for high-gradient operation. So far a series of rf tests have been made with a set of identical-geometry 30 GHz and X-band structures in copper, tungsten and molybdenum. A new test of a 30 GHz copper accelerating structure has been completed in CTF3 with pulse lengths up to 100 ns. The new results are presented and compared to the previous structures to determine dependencies of quantities such accelerating gradient, material, frequency, pulse length, power flow, conditioning rate, breakdown rate and surface damage.
|
|
|
||
THP079 | High-Power Test of a 57-MHz CW RFQ | rfq, vacuum, acceleration, linac | 767 | ||
|
High power heavy-ion drivers require a CW low-frequency RFQ for initial acceleration. The technique of high-temperature furnace brazed OFE copper cavities has proven to be very reliable for the production of high-quality CW accelerating structures. By appropriate choice of the resonant structure for the RIA driver RFQ we have achieved moderate transverse dimensions of the cavity and high quality accelerating-focusing fields required for simultaneous acceleration of multiple charge state ion beams. In our application the RFQ must provide stable operation over a wide range of RF power levels. To demonstrate the technology and high-power operation we have built an engineering prototype of one-segment of the 57-MHz RFQ structure [1]. The RFQ is designed as a 100% OFE copper structure and fabricated with a two-step furnace brazing process. The brazing process was successful and the cavity was shown to be vacuum tight. The errors in the tip-to-tip distances of the vanes average less than 50 microns. The RF measurements show excellent electrical properties of the resonator with a measured unloaded Q equal to 95% of the simulated value. Currently high-power tests are being performed.
|
*J. W. Rathke et al., Preliminary Engineering Design of A 57.5 MHz CW RFQ for the RIA Driver LINAC. Proc. of the LINAC-2002, p. 467. |
|
||
THP090 | Initial Studies of 9-Cell High-Gradient Superconducting Cavities at KEK | insertion, superconductivity, coupling, higher-order-mode | 794 | ||
|
Vertical tests of single cell cavities of the KEK Low Loss "Ichiro" design have established that gradients as high as 51 MV/m are feasible in principle. We have also performed vertical tests of 9-cell cavities. The internal surface was prepared according to the prescription developed in the single cell series test. In this paper we report results on the accelerating gradients achieved so far, an investigation of the possible presence of hydrogen "Q Disease," and other high-field related studies. We also present the measurement of the higher modes of the cavities.
|
|
|