Paper | Title | Page |
---|---|---|
MOPAB400 | Development of Helium Vessel Welding Process for SNS PPU Cavities | 1212 |
|
||
Funding: This manuscript has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The Spallation Neutron Source Proton Power Upgrade cavities are produced by Research Instrument with all the cavity processing done at vendor sites with final chemistry applied to the cavity to be electropolishing. Cavities are delivered to Jefferson Lab, ready to be tested. One of the tasks to be completed before the arrival of production-ready PPU cavities is to develop a robust helium vessel welding protocol. We have successfully developed the process and applied it to three six-cell high beta cavities. Here, we present the summary of RF results, welding process development, and post helium vessel RF results. |
||
![]() |
Poster MOPAB400 [1.313 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB400 | |
About • | paper received ※ 18 May 2021 paper accepted ※ 26 May 2021 issue date ※ 01 September 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAB040 | Design Concept for the Second Interaction Region for Electron-Ion Collider | 1435 |
|
||
Funding: Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177 and Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The possibility of two interaction regions (IRs) is a design requirement for Electron-Ion Collider (EIC). There is also a significant interest from the nuclear physics community to have a 2nd IR with measurement capabilities complementary to those of the 1st IR. While the 2nd IR will be in operation over the entire energy range of ~20GeV to ~140GeV center of mass (CM). The 2nd IR can also provide an acceptance coverage complementary to that of the 1st. In this paper, we present a brief overview and the current progress of the 2nd IR design in terms of the parameters, magnet layout, and beam dynamics. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB040 | |
About • | paper received ※ 24 May 2021 paper accepted ※ 31 August 2021 issue date ※ 30 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB005 | Design Status Update of the Electron-Ion Collider | 2585 |
|
||
Funding: Work supported by BSA, LLC under Contract No. DE-SC0012704, by JSA, LLC under Contract No. DE-AC05-06OR23177, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy. The design of the electron-ion collider EIC to be constructed at Brookhaven National Laboratory has been continuously evolving towards a realistic and robust design that meets all the requirements set forth by the nuclear physics community in the White Paper. Over the past year activities have been focused on maturing the design, and on developing alternatives to mitigate risk. These include improvements of the interaction region design as well as modifications of the hadron ring vacuum system to accommodate the high average and peak beam currents. Beam dynamics studies have been performed to determine and optimize the dynamic aperture in the two collider rings and the beam-beam performance. We will present the EIC design with a focus on recent developments. |
||
![]() |
Poster WEPAB005 [2.095 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB005 | |
About • | paper received ※ 14 May 2021 paper accepted ※ 22 June 2021 issue date ※ 16 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |