Author: Sy, A.V.
Paper Title Page
TUPAB040 Design Concept for the Second Interaction Region for Electron-Ion Collider 1435
 
  • B.R. Gamage, V. Burkert, R. Ent, Y. Furletova, D.W. Higinbotham, A. Hutton, F. Lin, T.J. Michalski, V.S. Morozov, R. Rajput-Ghoshal, D. Romanov, T. Satogata, A. Seryi, A.V. Sy, C. Weiss, M. Wiseman, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • E.C. Aschenauer, J.S. Berg, A. Jentsch, A. Kiselev, C. Montag, R.B. Palmer, B. Parker, V. Ptitsyn, F.J. Willeke, H. Witte
    BNL, Upton, New York, USA
  • C. Hyde
    ODU, Norfolk, Virginia, USA
  • P. Nadel-Turonski
    SBU, Stony Brook, New York, USA
 
  Funding: Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177 and Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The pos­si­bil­ity of two in­ter­ac­tion re­gions (IRs) is a de­sign re­quire­ment for Elec­tron-Ion Col­lider (EIC). There is also a sig­nif­i­cant in­ter­est from the nu­clear physics com­mu­nity to have a 2nd IR with mea­sure­ment ca­pa­bil­i­ties com­ple­men­tary to those of the 1st IR. While the 2nd IR will be in op­er­a­tion over the en­tire en­ergy range of ~20GeV to ~140GeV cen­ter of mass (CM). The 2nd IR can also pro­vide an ac­cep­tance cov­er­age com­ple­men­tary to that of the 1st. In this paper, we pre­sent a brief overview and the cur­rent progress of the 2nd IR de­sign in terms of the pa­ra­me­ters, mag­net lay­out, and beam dy­nam­ics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB040  
About • paper received ※ 24 May 2021       paper accepted ※ 31 August 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB181 Demonstration of Electron Cooling using a Pulsed Beam from an Electrostatic Electron Cooler 1827
 
  • M.W. Bruker, S.V. Benson, A. Hutton, K. Jordan, T. Powers, R.A. Rimmer, T. Satogata, A.V. Sy, H. Wang, S. Wang, H. Zhang, Y. Zhang
    JLab, Newport News, Virginia, USA
  • J. Li, F. Ma, X.M. Ma, L.J. Mao, X.P. Sha, M.T. Tang, J.C. Yang, X.D. Yang, H.W. Zhao
    IMP/CAS, Lanzhou, People’s Republic of China
  • H. Zhao
    BNL, Upton, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
Elec­tron cool­ing con­tin­ues to be an in­valu­able tech­nique to re­duce and main­tain the emit­tance in hadron stor­age rings in cases where sto­chas­tic cool­ing is in­ef­fi­cient and ra­dia­tive cool­ing is neg­li­gi­ble. Ex­tend­ing the en­ergy range of elec­tron cool­ers be­yond what is fea­si­ble with the con­ven­tional, elec­tro­sta­tic ap­proach ne­ces­si­tates the use of RF fields for ac­cel­er­a­tion and, thus, a bunched elec­tron beam. To ex­per­i­men­tally in­ves­ti­gate how the rel­a­tive time struc­ture of the two beams af­fects the cool­ing prop­er­ties, we have set up a pulsed-beam cool­ing de­vice by adding a syn­chro­nized puls­ing cir­cuit to the con­ven­tional elec­tron source of the CSRm cooler at In­sti­tute of Mod­ern Physics *. We show the ef­fect of the elec­tron bunch length and lon­gi­tu­di­nal ion fo­cus­ing strength on the tem­po­ral evo­lu­tion of the lon­gi­tu­di­nal and trans­verse ion beam pro­file and demon­strate the detri­men­tal ef­fect of tim­ing jit­ter as pre­dicted by the­ory and sim­u­la­tions. Com­pared to ac­tual RF-based cool­ers, the sim­plic­ity and flex­i­bil­ity of our setup will fa­cil­i­tate fur­ther in­ves­ti­ga­tions of spe­cific as­pects of bunched cool­ing such as syn­chro-be­ta­tron cou­pling and phase dither­ing.
* M. W. Bruker et al., Phys. Rev. Accel. Beams 24, 012801 (2021)
 
poster icon Poster TUPAB181 [3.699 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB181  
About • paper received ※ 19 May 2021       paper accepted ※ 15 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB121 Plasma Muon Beam Cooling for HEP 3999
 
  • M.A. Cummings, R.J. Abrams, R.P. Johnson, S.A. Kahn, T.J. Roberts
    Muons, Inc, Illinois, USA
  • V.S. Morozov, A.V. Sy
    JLab, Newport News, Virginia, USA
  • K. Yonehara
    Fermilab, Batavia, Illinois, USA
 
  Ion­iza­tion cool­ing has the po­ten­tial to shrink the phase space of a muon beam by a fac­tor of 106 within the muons’ short life­time (2.2 µs) be­cause the col­li­sion fre­quency in a cool­ing medium is ex­tremely high com­pared to con­ven­tional beam cool­ing meth­ods. It has been re­al­ized that ion­iza­tion cool­ing in­her­ently pro­duces a plasma of free elec­trons in­side the ab­sorber ma­te­r­ial, and this plasma can have an im­por­tant ef­fect on the muon beam. In par­tic­u­lar, under the right cir­cum­stances, it can both im­prove the rate of cool­ing and re­duce the equi­lib­rium emit­tance of the beam. This has the po­ten­tial to im­prove the per­for­mance of muon fa­cil­i­ties based on muon cool­ing; in par­tic­u­lar a fu­ture muon col­lider. We de­scribe how this pro­ject will in­te­grate Plasma muon beam cool­ing into both the basic He­li­cal Cool­ing Chan­nel (HCC) and ex­treme Para­met­ric-res­o­nance Ion­iza­tion Cool­ing (PIC) tech­niques. This po­ten­tially whole new ap­proach to muon cool­ing has ex­cit­ing prospects for sig­nif­i­cantly re­duced muon beam emit­tance.  
poster icon Poster THPAB121 [1.214 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB121  
About • paper received ※ 19 May 2021       paper accepted ※ 12 July 2021       issue date ※ 11 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)