MC5: Beam Dynamics and EM Fields
D10 Beam-Beam Effects - Theory, Simulations, Measurements, Code Developments
Paper Title Page
WEPGW067 The Study of Beam-Beam Effects on BINP Electron-Positron Colliders 2629
 
  • V.M. Borin, G.V. Karpov, O.I. Meshkov, D.N. Shatilov, D.B. Shwartz, M.V. Timoshenko
    BINP SB RAS, Novosibirsk, Russia
  • V.L. Dorokhov
    BINP, Novosibirsk, Russia
 
  The beam-beam effects depending on the beams current and energy were studied at electron-positron colliders VEPP-2000 and VEPP-4M by the set of different diagnostics: the streak camera, optical dissector, BPM. The beam transverse profiles as well as longitudinal motion were acquired from the moment of a first collision of the beams in the interaction point up to the establishment of an equilibrium state. The spectra of the beams oscillation during this process as well as influence of the transverse feedback were studied. The obtained results are compared with a numerical simulations and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW067  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB054 Design of the Multiplexing Optical Measurement System for a Pre-bunched THz Free Electron Laser 2931
 
  • Y.K. Zhao, W. Li, B.G. Sun, Y.G. Tang, F.F. Wu, T.Y. Zhou
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Funding: Work supported by the the Fundamental Research Funds for the Central Universities (WK2310000080, WK2310000057), and the National Science Foundation of China (11705203, 11575181)
A new and compact a pre-bunched terahertz (THz) free electron laser (FEL) at the National Synchrotron Radiation Laboratory, University of Science and Technology of China is being constructed and aims to generate the tunable radiation frequency ranges from 0.5 THz to 5 THz at 11-18 Mev electron energy. This system is expected to use for imaging, basic researches as well as industrial applications as a result of the significant merits of simple, compact and cost-effective. Due to the THz laser measurement system plays an important part in the pre-bunched THz FEL facility. Therefore, a multiplexing THz laser sensing measurement system model is developed for measuring the output laser power and the optical spectrum of THz radiation with the excellent advantages of robustness, high sensitivity and low-cost in this paper.
Corresponding author (email: tiany86@ustc.edu.cn)
Corresponding author (email: wufangfa@ustc.edu.cn)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB054  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS005 Long Range Beam-Beam Tune Shifts & Wire Compensation 3092
 
  • S.R. Koscielniak
    TRIUMF, Vancouver, Canada
 
  The weak-strong model subjects the test particle in the weak beam to transverse impulses from the strong beam, resulting in betatron tune shifts. We give analytic formulae for small amplitude and asymptotic shifts for three cases: short-range, long-range, and wire compensation; and optimize the latter to minimize the non-linear tune spreads.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS005  
About • paper received ※ 19 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS053 Frequency Map Measurements at the TPS 3240
 
  • C.H. Chen, B.Y. Chen, J.Y. Chen, M.-S. Chiu, P.J. Chou, T.W. Hsu, B.Y. Huang, C.-C. Kuo, W.Y. Lin, Y.-C. Liu, H.-J. Tsai, F.H. Tseng
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) has been operated for several years since it’s first light in December 2014. TPS has achieved reliable routine operation at 500 mA with more than 10 hrs beam lifetime. The dynamic aperture measurements and associated Frequency Map Analyses (FMA) at TPS reveal the beam dynamics behavior with and without insertion devices. A preliminary measurement study by using the turn-by-turn BPMs and comparison with the model simulation results will be presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS053  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS073 Beam-Beam Effect: Crab Dynamics Calculation in JLEIC 3293
 
  • H. Huang, F. Lin, V.S. Morozov, Y. Roblin, A.V. Sy, Y. Zhang
    JLab, Newport News, Virgina, USA
  • I. Neththikumara, S. Sosa, B. Terzić
    ODU, Norfolk, Virginia, USA
 
  The electron and ion beams of a future Electron Ion Collider (EIC) must collide at an angle for detection, machine and engineering design reasons. To avoid associated luminosity reduction, a local crabbing scheme is used where each beam is crabbed before collision and de-crabbed after collision. The crab crossing scheme then provides a head-on collision for beams with a non-zero crossing angle. We develop a framework for accurate simulation of crabbing dynamics with beam-beam effects by combining symplectic particle tracking codes with a beam-beam model based on the Bassetti-Erskine analytic solution. We present simulation results using our implementation of such a framework where the beam dynamics around the ring is tracked using Elegant and the beam-beam kick is modeled in Python.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS073  
About • paper received ※ 16 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS075 Effect of Beam-Beam Kick on Electron Beam Quality in First Bunched Electron Cooler 3297
 
  • S. Seletskiy, M. Blaskiewicz, A.V. Fedotov, D. Kayran, J. Kewisch
    BNL, Upton, Long Island, New York, USA
 
  The low energy RHIC electron cooler (LEReC) currently under commissioning at BNL is going to be the first non-magnetized bunched electron cooler (EC). For successful cooling LEReC requires that the electrons in the cooling section (CS) have small angles with respect to co-propagating ions. Since there is no strong magnetic field in the CS, the effects of ions on both the trajectory and focusing of the e-bunches is critical. In this paper we consider the ion beam kick on the electron bunches and derive requirements to the respective alignment of electron and ion beams in non-magnetized coolers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS075  
About • paper received ※ 08 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS081 An Analytic Approach to Emittance Growth from the Beam-Beam Effect with Applications to the LHeC 3307
 
  • E.A. Nissen
    JLab, Newport News, Virginia, USA
  • D. Schulte
    CERN, Meyrin, Switzerland
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, world-wide license to publish or reproduce this manuscript.
In colliders with asymmetric rigidity such as the proposed Large Hadron electron Collider, jitter in the weaker beam can cause emittance growth via coherent beam-beam interactions. The LHeC in this case would collide 7 TeV protons on 60 GeV electrons, which can be modeled using a weak-strong model. In this work we estimate the proton beam emittance growth by separating out the longitudinal angular kicks from an off-center bunch interaction and produce an analytic expression for the emittance growth per turn in systems like the LHeC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS081  
About • paper received ※ 01 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS082 Luminosity Studies of Asymmetric Crab Crossing in JLEIC 3311
 
  • E.A. Nissen
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, world-wide license to publish or reproduce this manuscript.
The proposed Jefferson Lab Electron Ion Collider (JLE-IC) currently plans to use a crab crossing scheme to max-imize the available luminosity. It had been suggested that space and cost savings, as well as hadron beam quality improvements, could be realized by leaving the ion beam un-crabbed and increasing the crabbing angle of the elec-tron beam. This and variations in-between equal and totally one-sided crabbing are examined for both JLEIC and LHC parameters, with various changes in crabbing angle and frequency studied to maximize luminosity.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS082  
About • paper received ※ 14 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS092 3d Start-to-End Simulations of the Coherent Electron Cooling 3329
 
  • J. Ma, V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
 
  Coherent electron cooling (CeC) is a novel technique for rapidly cooling high-energy, high-intensity hadron beam. Two designs of coherent electron cooler, with a free electron laser (FEL) amplifier and a plasma-cascade micro-bunching amplifier, are cost effective and don’t require separation of hadrons and electrons. These schemes are used for the demonstration experiment in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). SPACE, a parallel, relativistic 3D electromagnetic Particle-in-Cell (PIC) code, has been used for simulation studies of these two coherent electron cooler systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS092  
About • paper received ※ 15 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)