MC4: Hadron Accelerators
A24 Accelerators and Storage Rings, Other
Paper Title Page
MOPMP014 NICA Accelerator Complex at JINR 452
 
  • E. Syresin, O.I. Brovko, A.V. Butenko, E.E. Donets, A.R. Galimov, E.V. Gorbachev, A. Govorov, V. Karpinsky, V. Kekelidze, H.G. Khodzhibagiyan, S.A. Kostromin, A.D. Kovalenko, O.S. Kozlov, I.N. Meshkov, A.V. Philippov, A.O. Sidorin, V. Slepnev, A.V. Smirnov, G.V. Trubnikov, A. Tuzikov, V. Volkov
    JINR, Dubna, Moscow Region, Russia
 
  Status of the project of NICA accelerator complex, which is under construction at JINR (Dubna, Russia), is presented. The main goal of the project is to provide ion beams for experimental studies of hot and dense baryon-ic matter and spin physics. The NICA collider will pro-vide heavy ion collisions in the energy range of √sNN=4/11 GeV at average luminosity of L=1.1027cm−2·s−1 for 197Au79+ nuclei and polarized proton collisions in energy range of √sNN=12/27 GeV at lumi-nosity of L ≥ 1031cm−2·s−1. NICA accelerator complex will consist of two injector chains, 578 MeV/u supercon-ducting (SC) booster synchrotron, the existing SC syn-chrotron (Nuclotron), and the new SC collider that has two storage rings each of 503 m circumference. Con-structing facility is based on Nuclotron-technology of SC magnets with iron yoke. Hollow SC cable cooled by two-phase He-flux used for operation with 10 kA currents and 1Hz cycling rate. Both stochastic and electron cooling methods are used for the beam accumulation and its stability maintenance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP014  
About • paper received ※ 29 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB028 Application of WCM in Beam Commissioning of RCS in CSNS 636
 
  • M.T. Li, F. Li
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • Y.W. An, S.Y. Xu, T.G. Xu
    IHEP, Beijing, People’s Republic of China
 
  Wall Current Monitor (WCM) is the only beam instru-ment in RCS of CSNS. It is utilized to derive many kinds of physics parameters during beam commissioning. The longitudinal phase distribution of the bunch over the boosting time is deduced for our future analyzation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB028  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB029 Longitudinal Tomography for Analysing the Longitudinal Phase Space Distribution in RCS of CSNS 639
 
  • M.T. Li
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • Y.W. An, S.Y. Xu, T.G. Xu
    IHEP, Beijing, People’s Republic of China
 
  It is proved that in the beam commissioning of the RCS of CSNS, the longitudinal optimization is vital for the promotion of the beam power. The WCM is the only beam instrument for the measurement of the longitudinal parameters. It is important for us to deduce the longitudi-nal phase space distribution, using the WCM data. The longitudinal tomography is applied, and some satisfying results have been obtained.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB029  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB043 Two-Beam Operation in DESIREE 659
 
  • A. Källberg, M. Björkhage, M. Blom, H. Cederquist, P. Reinhed, S. Rosén, H.T. Schmidt, A. Simonsson, H. Zettergren
    Stockholm University, Stockholm, Sweden
 
  The current status of DESIREE is described, with special emphasis on the setup for collision experiments with ions in both the two electrostatic rings - negative ions in one ring and positive in the other. By measuring the kinetic energy released in mutual neutralization reactions be-tween the two ions at collision energies close to zero eV in 3D, the population of different reaction channels has been obtained. The different steps necessary to set up the beams to get well controlled experimental properties are described as well as the principles behind our automatic optimization routines, which are extensively used with consistent result.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB043  
About • paper received ※ 02 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB046 Status of the ESSnuSB Accumulator Design 666
 
  • Y. Zou, T.J.C. Ekelöf, M. Olvegård, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • E. Bouquerel, M. Dracos
    IPHC, Strasbourg Cedex 2, France
  • M. Eshraqi, B. Gålnander
    ESS, Lund, Sweden
  • H.O. Schönauer, E.H.M. Wildner
    CERN, Geneva, Switzerland
 
  Funding: This project is supported by the COST Action CA15139 EuroNuNet. It has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777419.
The 2.0 GeV, 5 MW proton linac for the European Spallation Source, ESS, will have the capacity to accelerate additional pulses and send them to a neutrino target, providing an excellent opportunity to produce an unprecedented high performance neutrino beam, the ESS neutrino Super Beam, ESSnuSB, to measure, with precision, the CP violating phase at the 2nd oscillation maximum. In order to comply with the acceptance of the target and horn systems that will form the neutrino super beam, the long pulses from the linac must be compressed by about three orders of magnitude with minimal particle loss, something that will be achieved through multi-turn charge-exchange injection in an accumulator ring. This ring will accommodate over 2·1014 protons, which means that several design challenges are encountered. Strong space charge forces, low-loss injection with phase space painting, efficient collimation, a reliable charge stripping system, and e-p instabilities are some of the important aspects central to the design work. This paper presents the status of the accumulator ring design, with multi-particle simulations of the injections procedure.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB046  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB055 First Partially Stripped Ions in the LHC (208Pb81+) 689
 
  • M. Schaumann, R. Alemany-Fernández, H. Bartosik, T. Bohl, R. Bruce, G.H. Hemelsoet, S. Hirlaender, J.M. Jowett, V. Kain, M.W. Krasny, J. Molson, G. Papotti, M. Solfaroli Camillocci, H. Timko, J. Wenninger
    CERN, Geneva, Switzerland
 
  The Gamma Factory initiative proposes to use partially stripped ion (PSI) beams as drivers of a new type of high intensity photon source. As part of the ongoing Physics Beyond Collider studies, initial beam tests with PSI beams have been executed at CERN. On 25 July 2018 lead ions with one remaining electron (208Pb81+) were injected and accelerated in the LHC for the first time. After establishing the injection and circulation of a few 208Pb81+ bunches, beam lifetimes of about 50 hours could be established at 6.5 TeV proton equivalent energy. This paper describes the setup of the beam tests and observations made.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB055  
About • paper received ※ 29 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB065 Enhancing Experimental Prospects With Low Energy Antiprotons 727
 
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkłodowskaCurie grant agreement No 721559.
The Extra Low Energy Antiproton ring (ELENA) is a critical upgrade to the Antiproton Decelerator (AD) at CERN and saw the first beam in 2018. ELENA will significantly enhance the achievable quality of low energy antiproton beams and enable new experiments. To fully exploit the potential of this new facility, advances are required in numerical tools that can adequately model beam transport, life time and interaction, beam diagnostics tools and detectors to fully characterize the beam’s properties, as well as in novel experiments that take advantage of the enhanced beam quality that ELENA can provide. These research areas are in the heart of the pan-European research and training network AVA (Accelerators Validating Antimatter physics) which started in 2017. This contribution presents research results within AVA on the performance of ultra-thin diamond membranes, electron cooling and beam life time studies of low energy ion and antiproton beams, as well as efficient integration and performance optimization of cryogenic detectors in ELENA and associated trap experiments. These results are used to describe the optimum layout of a state-of-the-art low energy antiproton facility and associated experiments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB065  
About • paper received ※ 13 May 2019       paper accepted ※ 17 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXPLM1 LHC Injectors Upgrade Project: Towards New Territory Beam Parameters 3385
 
  • M. Meddahi, R. Alemany-Fernández, H. Bartosik, G. Bellodi, J. Coupard, H. Damerau, G.P. Di Giovanni, F.B. Dos Santos Pedrosa, A. Funken, B. Goddard, K. Hanke, A. Huschauer, V. Kain, A.M. Lombardi, B. Mikulec, S. Prodon, G. Rumolo, R. Scrivens, E.N. Shaposhnikova
    CERN, Meyrin, Switzerland
 
  The LHC injectors Upgrade (LIU) project aims at increasing the intensity and brightness in the LHC injectors in order to match the challenging requirements of the High-Luminosity LHC (HL-LHC) project, while ensuring high availability and reliable operation of the injectors complex up to the end of the HL-LHC era (ca. 2035). This requires extensive hardware modifications and new beam dynamics solutions in the entire LHC proton and ion injection chains: the new Linac4, the Proton Synchrotron Booster, the Proton Synchrotron the Super Proton Synchrotron together with the ion PS injectors (the Linac3 and the Low Energy Ion Ring). All hardware modifications will be implemented during the 2019-2020 CERN accelerators shutdown. This talk would analyze the various project phases, share the lessons learned, and conclude on the expected beam parameter reach, together with the related risks.  
slides icon Slides THXPLM1 [20.029 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THXPLM1  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)