MC4: Hadron Accelerators
A07 Electrostatic Accelerators
Paper Title Page
TUPRB001 Nanosecond Pulsing for Tandem Accelerator 1673
 
  • P. Linardakis, N.R. Lobanov, D.C. Tempra
    Research School of Physics and Engineering, Australian National University, Canberra, Australian Capitol Territory, Australia
 
  Funding: The Australian Federal Government Superscience/EIF funding under the NCRIS mechanism
A pulsed system capable of delivering up to a few microampere bursts of ions with mass range M=1 - 100 amu with a duration of approximately 1 ns is described. The system consists of a negative ion source, three frequency harmonic buncher - which uses the entire tandem electrostatic accelerator as a drift path to produce bunched ion bursts at the targets or linac entry - and high energy choppers. The buncher consists of a single acceleration gap with aligned retractable grids.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB001  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB006 Effect of Electrostatic Deflectors and Fringe Fields on Spin for Hadron Electric Dipole Moment Measurements on Storage Rings 1691
SUSPFO009   use link to see paper's listing under its alternate paper code  
 
  • J. Michaud, J.-M. De Conto, Y. Gómez Martínez
    LPSC, Grenoble Cedex, France
 
  The observed matter-antimatter asymmetry in the universe cannot be explained by the Standard Model. An explanation is a non-vanishing Electric Dipole Moment of subatomic particles. The JEDI (Jülich Electric Dipole moment Investigations) collaboration is preparing a direct EDM measurement of protons and deuterons first at the storage ring COSY (COoler SYnchrotron) and later at a dedicated storage ring. To achieve this, one needs a stable polarization, i.e. around 1000 seconds for spin coherence time. One source of decoherence are the electrostatic deflectors, and this must be quantified. We developed an analytical model for cylindrical deflectors, including fringe fields, and the associated beam and spin transfer functions, integrated over the deflector. All boundaries (including ground) are considered, giving a realistic, accurate field map up to any order. We get universal formulas, the only adjustable parameter being the deflector gap/radius ratio, all other terms being numerical. This has been implemented in BMAD. We present the mathematical, physical and numerical developments, as well as results for a proton storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB006  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)