MC2: Photon Sources and Electron Accelerators
A04 Circular Accelerators
Paper Title Page
MOPGW053 Residual Gas Lifetime In High Energy Photon Source (HEPS) 210
 
  • S.K. Tian, H.S. Xu
    IHEP, Beijing, People’s Republic of China
 
  High vacuum has always been mandatory in particle accelerators. This is especially true for circular machines, where the beam makes thousands or millions turns, and beam lifetime is heavily affected by the residual gas scattering. At the beginning of storage ring operation the lifetime was very short mostly dominated by residual gas scattering. The residual gas lifetime is comprised of the elastic and inelastic scattering on electrons and elastic and inelastic scattering on nuclei. One usually calculates only the elastic scattering on nuclei (single Coulomb scattering) and inelastic scattering on nuclei (bremsstrahlung) of the residual gas scattering lifetime component. The analytic calculation the residual gas scattering lifetime and simulations of the beam interaction with the residual gas with code will be shown in this presentation  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW053  
About • paper received ※ 15 May 2019       paper accepted ※ 19 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS004 2nd Order Optics Symmetrisation through Off-Energy Orbit Response Matrix Analysis 841
 
  • D.K. Olsson, Å. Andersson, M. Sjöström
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The MAX IV 3 GeV storage ring lattice contains several strong sextupoles. In order to achieve nominal lattice performance it is important to be able to characterise and correct the higher order magnets and optics of the lattice. This has been done through the analysis of the Off-Energy Response Matrix (OEORM). Its approximate linearity in sextupole strength has been utilised to identify sextupole errors, as well as symmetrise the 2nd order optics. The symmetrisation was able to correct chromaticity, and increase horizontal acceptance by 50 %, compared to magnet settings based solely on rotating coil measurements. An approximate decrease of 10 % in vertical acceptance was detected. This work was inspired by similar investigations at ESRF.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS004  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS017 Status of Operation With Negative Momentum Compaction at KARA 878
 
  • P. Schreiber, T. Boltz, M. Brosi, B. Härer, A. Mochihashi, A.-S. Müller, A.I. Papash, M. Schuh
    KIT, Karlsruhe, Germany
 
  Funding: We are supported by the DFG-funded ’Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology’ and European Union’s Horizon 2020 research and innovation programme (No 730871)
For future synchrotron light source development novel operation modes are under investigation. At the Karlsruhe Research Accelerator (KARA) an optics with negative momentum compaction has been proposed, which is currently under commissioning. In this context, the collective effects expected in this regime are studied with an initial focus on the head-tail instability and the micro-bunching instability resulting from CSR self-interaction. In this contribution, we will present the proposed optics and the status of implementation for operation in the negative momentum compaction regime as well as a preliminary discussion of expected collective effects.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS017  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS040 Beta Beating and Coupling Correction of the ILSF Storage Ring 946
 
  • A.M. Mash’al, E. Ahmadi, S. Dastan, J. Rahighi
    ILSF, Tehran, Iran
  • F.D. Dabbagh Kashani
    IUST, Narmac, Tehran, Iran
 
  The Iranian Light Source Facility (ILSF) is a 3 GeV synchrotron radiation facility, which is in the design stage. Inevitable errors like imperfection of magnetic field and misalignment of magnets will introduce various destructive effects on the performance of the machine. The possibility of correcting the errors should be thoroughly examined before settling the design. In this paper, the correction process of beta beating and coupling with LOCO is described. The rms beta beating in horizontal and vertical planes after correction are reduced to 1% and 2% respectively. The average coupling ratio of lattice for 100 random error distribution is corrected to 0.2%.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS040  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS079 Design of 1.5 GeV Compact Storage Ring for the EUV and Soft X-rays 1028
 
  • J.Y. Lee, I.G. Jeong
    Korea Atomic Energy Research Institute (KAERI), Daejeon, Republic of Korea
  • P. Buaphad, Y.J. Joo, H.R. Lee
    University of Science and Technology of Korea (UST), Daejeon, Republic of Korea
  • P. Buaphad, Y.J. Joo, Y. Kim, H.R. Lee, S. Lee
    KAERI, Jeongeup-si, Republic of Korea
 
  Recently, there has been discussions about the need for the next-generation synchrotron light source facility in Korea. The facility in consideration is composed of a super-conducting linear accelerator for the injector, a storage ring for the EUV and soft X-rays, and a main storage ring for hard X-rays. In this study, design concepts of the soft X-ray storage ring is presented. To effectively utilize the small space allocated for the soft X-ray storage ring, a compact storage ring is taken into account. The compact storage ring is a synchrotron accelerator of which diameter is shorter than the length of injector beamline. In this paper, we report design concepts and optimization of the compact storage ring for the EUV and soft X-ray users. The lattice of the storage ring is modelled by utilizing ELEGANT simulation code to optimize beam parameters and performance of the ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS079  
About • paper received ※ 24 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS098 A Primary Electron Beam Facility at CERN 1098
 
  • Y. Papaphilippou, R. Corsini, Y. Dutheil, L.R. Evans, B. Goddard, A. Grudiev, A. Latina, S. Stapnes
    CERN, Meyrin, Switzerland
  • T.P.Å. Åkesson
    Lund University, Department of Physics, Lund, Sweden
 
  This paper describes the concept of a primary electron beam facility at CERN, to be used for dark gauge force and light dark matter searches. The electron beam is produced in three stages: A Linac accelerates electrons from a photo-cathode up to 3.5 GeV. This beam is injected into the Super Proton Synchrotron, SPS, and accelerated up to a maximum energy of 16 GeV. Finally, the accelerated beam is slowly extracted to an experiment, possibly followed by a fast dump of the remaining electrons to another beamline. The beam parameters are optimized using the requirements of the Light Dark Matter eXperiment, LDMX, as benchmark.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS098  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB105 Realizing Low-Emittance Lattice Solutions With Complex Bends 1906
 
  • V.V. Smaluk, T.V. Shaftan
    BNL, Upton, Long Island, New York, USA
 
  Funding: Department of Energy Contract No. DE-SC0012704
A concept of new lattice element called "Complex Bend" is recently proposed at NSLS-­II. Replacing the regular dipoles in the Double­-Bend Achromat lattice by Complex Bends significantly reduces the beam emittance. The first attempt of lattice design for potential NSLS-­II upgrade based on Complex Bend, is described. Compared with the current NSLS­-II lattice, the new solution modifies only three of the six girders per cell. The linear optics has been matched keeping unchanged the lattice parameters at the straight sections, where the light­-generating insertion devices are located. The Complex Bend gradient is limited by 250 T/m assuming possible use of permanent magnets. The lattice provides 65 pm emittance without damping wigglers, use of which results in further decrease of the emittance
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB105  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)