Author: Roser, T.
Paper Title Page
MOZPLS2 Ion Collider Precision Measurements With Different Species 28
 
  • G.J. Marr, E.N. Beebe, I. Blackler, W. Christie, K.A. Drees, P.S. Dyer, A.V. Fedotov, W. Fischer, C.J. Gardner, H. Huang, T. Kanesue, N.A. Kling, V. Litvinenko, C. Liu, Y. Luo, D. Maffei, B. Martin, A. Marusic, K. Mernick, M.G. Minty, C. Naylor, M. Okamura, I. Pinayev, G. Robert-Demolaize, T. Roser, P. Sampson, V. Schoefer, T.C. Shrey, D. Steski, P. Thieberger, J.E. Tuozzolo, K. Zeno, I.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC, under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Precedent to electron cooling commissioning and collisions of Gold at various energies at RHIC in 2018, the STAR experiment desired an exploration of the chiral magnetic effect in the quark gluon plasma (QGP) with an isobar run, utilizing Ruthenium and Zirconium. Colliding Zr-96 with Zr-96 and Ru-96 with Ru-96 create the same QGP but in a different magnetic field due to the different charges of the Zr (Z=40) and Ru (Z=44) ions. Since the charge difference is only 10%, the experimental program requires exacting store conditions for both ions. These systematic error concerns presented new challenges for the Collider, including frequent reconfiguration of the Collider for the different ion species, and maintaining level amounts of instantaneous and integrated luminosity between two species. Moreover, making beams of Zr-96 and Ru-96 is challenging since the natural abundances of these isotopes are low. Creating viable enriched source material for Zr-96 required assistance processing from RIKEN, while Ru-96 was provided by a new enrichment facility under commissioning at Oak Ridge National Laboratory.
 
slides icon Slides MOZPLS2 [4.758 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOZPLS2  
About • paper received ※ 11 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP044 Improving the Luminosity for Beam Energy Scan II at RHIC 540
 
  • C. Liu, M. Blaskiewicz, K.A. Drees, A.V. Fedotov, W. Fischer, C.J. Gardner, H. Huang, D. Kayran, Y. Luo, G.J. Marr, A. Marusic, K. Mernick, M.G. Minty, C. Montag, I. Pinayev, S. Polizzo, V.H. Ranjbar, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, V. Schoefer, T.C. Shrey, S. Tepikian, P. Thieberger, A. Zaltsman, K. Zeno, I.Y. Zhang, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The QCD (Quantum Chromodynamics) phase diagram has many uncharted territories, particularly the nature of the transformation from Quark-Gluon plasma (QGP) to the state of Hadronic gas. The Beam Energy Scan I (BES-I) at the Relativistic Heavy Ion Collider (RHIC) was completed but measurements had large statistical errors. To improve the statistical error and expand the search for first-order phase transition and location of the critical point, Beam Energy Scan II will commence in 2019 with a goal of improving the luminosity by a factor of 3-4. The beam lifetime at low energies was and will be limited by some physical effects of which the most significant are intrabeam scattering, space charge, beam-beam, persistent current effects. This article will review these potential limiting factors and introduce the countermeasures which will be in place to improve BES-II luminosity.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP044  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW102 CBETA - Novel Superconducting ERL 1651
 
  • R.J. Michnoff, J.S. Berg, S.J. Brooks, J. Cintorino, Y. Hao, C. Liu, G.J. Mahler, F. Méot, S. Peggs, V. Ptitsyn, T. Roser, P. Thieberger, S. Trabocchi, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, F.J. Willeke, H. Witte
    BNL, Upton, Long Island, New York, USA
  • N. Banerjee, J. Barley, A.C. Bartnik, I.V. Bazarov, D.C. Burke, J.A. Crittenden, L. Cultrera, J. Dobbins, S.J. Full, F. Furuta, R.E. Gallagher, M. Ge, C.M. Gulliford, B.K. Heltsley, G.H. Hoffstaetter, D. Jusic, R.P.K. Kaplan, V.O. Kostroun, Y. Li, M. Liepe, W. Lou, J.R. Patterson, P. Quigley, D.M. Sabol, D. Sagan, J. Sears, C.H. Shore, E.N. Smith, K.W. Smolenski, V. Veshcherevich, D. Widger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Douglas
    Douglas Consulting, York, Virginia, USA
  • M. Dunham, C.E. Mayes
    SLAC, Menlo Park, California, USA
 
  Funding: New York State Research&Development Authority - NYSERDA agreement number 102192
We are successfully commissioning a unique Cornell University and Brookhaven National Laboratory Electron Recovery Linac (ERL) Test Accelerator ’CBETA’ [1]. The ERL has four accelerating passes through the supercon-ducting linac with a single Fixed Field Alternating Linear Gradient (FFA-LG) return beam line built of the Halbach type permanent magnets. CBETA ERL accelerates elec-trons from 42 MeV to 150 MeV, with the 6 MeV injec-tor. The novelties are that four electron beams, with ener-gies of 42, 78, 114, and 150 MeV, are merged by spreader beam lines into a single arc FFA-LG beam line. The elec-tron beams from the Main Linac Cryomodule (MLC) pass through the FFA-LG arc and are adiabatically merged into a single straight line. From the straight section the beams are brought back to the MLC the same way. This is the first 4 pass superconducting ERL and the first single permanent magnet return line.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW102  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS108 Numerical Simulations of RHIC FY17 Spin Flipper Experiments 2174
 
  • P. Adams, H. Huang, J. Kewisch, C. Liu, F. Méot, P. Oddo, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Spin flipper experiments during RHIC Run 17 have demonstrated the 97% effectiveness of polarization sign reversal during stores. Zgoubi numerical simulations were setup to reproduce the experimental conditions. A very good agreement between the experimental measurements and simulation results was achieved at 23.8GeV, thus the simulations are being used to help optimize the various Spin Flipper parameters. The ultimate goal for these simulations is to serve as guidance towards a perfect flip at high energies to allow a routine Spin Flipper use during physics runs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS108  
About • paper received ※ 13 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)