Keyword: dumping
Paper Title Other Keywords Page
MOPMF042 Crab Cavity Failures Combined with a Loss of the Beam-Beam Kick in the High Luminosity LHC cavity, beam-losses, luminosity, collimation 192
 
  • B. Lindstrom, H. Burkhardt, V.K.B. Olsen, A. Santamaría García, K.N. Sjobak, M. Valette, D. Wollmann
    CERN, Geneva, Switzerland
 
  Crab cavities are an essential component of the High Luminosity LHC (HL-LHC) project. In case of a failure they can create large transverse kicks on the beam within tens of microseconds and, therefore, require a fast extraction of the circulating beam. In this paper, the effects of different crab cavity failures in combination with the missing beam-beam kick following the dump of only one LHC beam are presented and consequences for the interlocking strategy of crab cavities are discussed.
Work supported by the High Luminosity LHC project.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF060 Safe Disposal of the LHC Beam without Beam Dump - Method and Experimental Verification experiment, collimation, emittance, controls 253
 
  • M. Valette, B. Lindstrom, A. Mereghetti, R. Schmidt, M. Solfaroli, J.A. Uythoven, D. Valuch, J. Wenninger, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
 
  Funding: Research supported by the HL-LHC project.
In the extremely unlikely event of a non-working beam dumping system in the LHC, the 360 MJ of stored beam energy can be dissipated in the collimation system as a last mitigation measure. In such a situation, it is important to reduce the stored beam energy both quickly and at the same time as smoothly as possible in order to limit the risk of trips of critical systems, to avoid quenches of superconducting magnets (which would lead to changes of the beam trajectory and damage to the accelerator) and ultimately damage to the collimators themselves. Detailed steps and parameters have been developed and validated during two dedicated experiments with beam in the LHC. This paper summarizes the key aspects in view of the preparation of such a procedure for operational use, which will allow for the safe disposal of the full LHC beam by the operation crews.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF025 Multi-turn Study in FLUKA for the Design of CERN-PS Internal Beam Dumps simulation, experiment, operation, proton 724
 
  • J.A. Briz Monago, M. Calviani, F. Cerutti, J.J. Esala, S.S. Gilardoni, F.-X. Nuiry, G. Romagnoli, G. Sterbini, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  The CERN Proton-Synchrotron (PS) accelerator is currently equipped with two internal beam dumps in operation since the 1970's. An upgrade is required to be able to withstand the beams that will be produced after the end of the LIU (LHC Injector Upgrade) project. For the design of the new dumps, the interaction and transport of beam and all secondary particles generated has been simulated using FLUKA. The working principle of the internal beam dump in the PS ring is very peculiar with respect to the other dumps in the CERN accelerator complex. A moving dump intercepts the circulating beam during few milliseconds like a fast scraper. The moving dump shaving the beam, the multi-turn transport of beam particles in the PS accelerator and a time-dependent energy deposition in the dump were modeled. The methodology and the results obtained in our studies for the dump core and downstream equipment will be reported in this contribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF031 Beam Simulation Studies for the Upgrade of the SPS Beam Dumping System kicker, simulation, operation, injection 747
 
  • C. Heßler, W. Bartmann, E. Carlier, L. Ducimetière, B. Goddard, F.M. Velotti
    CERN, Geneva, Switzerland
 
  The SPS at CERN currently uses a beam dumping system that is installed in the long straight section 1 (LSS1) of the SPS. This system consists of two beam stopper blocks for low and high energy beams, as well as two vertical and three horizontal kicker magnets, which deflect and dilute the beam on the dumps. Within the frame of the LHC injector upgrade project (LIU) the beam dumping system will be relocated to long straight section 5 (LSS5) and upgraded with an additional vertical kicker, new main switches and a single new beam dump, which covers the full energy range. The impact of a possible increase of the vertical kicker rise time on the beam has been studied in simulations with MAD-X for the different optics in the SPS. Furthermore, the impact on the beam in failure scenarios such as the non-firing of one kicker has been investigated. The results of these studies will be presented and discussed in this paper. Operational mitigation methods to deal with an increased rise time will also be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMG004 Design of the Future High Energy Beam Dump for the CERN SPS operation, shielding, simulation, kicker 2612
 
  • S. Pianese, J.A. Briz Monago, M. Calviani, D. Grenier, P.B. Heckmann, J. Humbert, R. Illan Fiastre, A. Perillo-Marcone, G. Romagnoli, S. Sgobba, D. Steyart, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  The future CERN Super Proton Synchrotron (SPS) internal dump (Target Internal Dump Vertical Graphite, known as TIDVG#5), to be installed during CERN's Long Shutdown 2 (2019-2020), will be required to intercept beam dumps from 26 to 450 GeV, with increased intensity and repetition rates with respect to its predecessor (TIDVG#4). The beam power to be managed by the dump will increase by approximately a factor of four; resulting in new challenges in terms of design in order to fulfil the highly demanding specification, which is based on guaranteeing a good performance of the machine with little or no limitations imposed by this device. This paper presents the proposed design, including material selection, manufacturing techniques and thermo-mechanical simulations under different operational scenarios expected during the lifetime of the device.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMG004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)