Paper | Title | Page |
---|---|---|
MOPOW015 | Fermi Upgrade Plans | 744 |
|
||
FERMI has reached its nominal performance on both FEL lines, FEL-1 (12 eV to 62 eV) and FEL-2 (62 eV to 310 eV). After a brief overview of the activities with users, we will describe plans for LINAC , FEL and beamline upgrades for 2016-2018 and beyond. This includes EEHG schemes for FEL-2. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOW039 | An Oscillator Configuration for Full Realization of Hard X-ray Free Electron Laser | 801 |
|
||
Funding: Work at ANL supported under US Department of Energy contract DE-AC02-76SF00515 and at SLAC by the U.S. Department of Energy, Office of Science, under Contract No. DE-ACO2-O6CH11357 An X-ray free electron laser can be built in an oscillator (XFELO) configuration by employing an X-ray cavity with Bragg mirrors such as diamond*. An XFELO at the 5th harmonic frequency may be implemented at the LCLS II using its 4 GeV superconducting linac. The XFELO will provide stable, coherent, high-spectral-purity hard x-rays. In addition, portions of its output may be enhanced by the LCLS amplifier for stable pulses of ultrashort duration determined by the electron bunch length. Much progress has been made recently on the feasibility of an XFELO: Analytical and numerical methods have been developed to compute the performance of a harmonic XFELO. The energy spread requirement over a sufficient length of the bunch can be met by temporal shaping of the photo-cathode drive laser**. Experiments at the APS have shown that Be-compound refractive lenses are suitable for a low-loss focusing and that the synthetic diamond crystals can withstand the intense x-ray exposure, in accord with estimates based on molecular dynamics considerations***. A strain-free mounting of thin diamond crystal (< 100 microns) can be realized by shaping a thick diamond into a blind alley****. * R. R. Lindberg et al., PRSTAB 1010701 (2011) ** W. Qin et al., this conference *** N. Medvedev et al., Phys. Rev. B 88, 224304 (2013) **** S. Terentyev, private communication |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |