Author: Sapinski, M.
Paper Title Page
MOP19 Commissioning of the Renewed Long Radial Probe in PSI Ring Cyclotron 76
 
  • M. Sapinski, R. Dölling, M. Rohrer
    PSI, Villigen PSI, Switzerland
 
  PSI’s Ring cyclotron is a high intensity proton cyclotron producing 2 mA beam. The beam is accelerated over about 180 turns from 72 MeV to 590 MeV. The Long Radial Probe, called RRL, scans the beam along the range of beam radii from 2048 mm to 4480 mm. A replacement for the RRL has been developed in the last years*. The recently installed new probe drives three carbon fibers with 30 ’m diameter through the turns and measures secondary electron currents, providing information on horizontal and vertical beam shape. Additional drives are available for a later extension of measurement capabilities. The main challenges are a coupling of the device elements to RF fields leaking from the accelerating cavities, plasma interfering with the measured signal and performance of the carbon fibers in harsh environment with high intensity beam. We report on commissioning of the probe with RF and beam and discuss measurement results.
* doi:10.18429/JACoW-IBIC2020-WEPP33
 
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP19  
About • Received ※ 06 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 24 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP24 Test of a Prototype for Modular Profile and Position Monitors in the Shielding of the 590 MeV Beam Line at HIPA 92
 
  • R. Dölling, F. Marcellini, M. Sapinski
    PSI, Villigen PSI, Switzerland
 
  A new generation of monitor plugs is under develop-ment as spares for the ageing wire profile monitors and beam position monitors inserted into massive shielding in the target regions of the 590 MeV proton beam line at HIPA. A prototype was installed recently in the beam line to the ultra-cold neutron source UCN, to test the perfor-mance of wire monitor, BPM and modular mechanical design in a low-radiation environment. We report on first measurements with beam.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP24  
About • Received ※ 08 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 27 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)