Author: Saccani, M.
Paper Title Page
TUP03 The Beam Loss Monitoring System after the LHC Long Shutdown 2 at CERN 220
 
  • M. Saccani, E. Effinger, W. Viganò, C. Zamantzas
    CERN, Meyrin, Switzerland
 
  Most of the LHC systems at CERN were updated during the Long Shutdown 2, from December 2018 to July 2022, to prepare the accelerator for High-Luminosity. The Beam Loss Monitoring system is a key part of the LHC’s instrumentation for machine protection and beam optimisation by producing continuous and reliable measurements of beam losses along the accelerator. The BLM system update during LS2 aims at providing better gateware portability to future evolutions, improving significantly the data rate in the back-end processing and the software efficiency, and adding remote command capability for the tunnel electronics. This paper first recalls the Run 1 and Run 2 BLM system achievements, then reviews the main changes brought during LS2, before focusing on the commissioning phase of Run 3 and future expectations.  
poster icon Poster TUP03 [2.871 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP03  
About • Received ※ 05 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 29 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP04 Dual channel FMC High-Voltage Supply 383
 
  • W. Viganò, J. Emery, M. Saccani
    CERN, Meyrin, Switzerland
 
  The Beam Loss Monitoring (BLM) detectors and electronics are installed along the CERN accelerators to provide measurements of the beam loss as well as protection from them when excessive. Majority of the BLM detector types require voltage biasing up to 2000VDC with the possibility to generate voltage modulation patterns to verify the connection chain of the detectors to the front-ends. Currently, the power supply solution consists of COTS large format power supplies with additional custom electronics and various interconnections to provide monitoring and remote control. For this reason, a market search has been done to identify a high reliability module suitable for dedicated BLM installations composed by a few detectors. The outcome of the market search has justified the need to design a low cost custom board, compatible with the CERN infrastructure and different detector types, as well as allow easy customization to cover various installation architectures and voltage range needs. Main characteristics could be summarized with the following points: completely remote controlled and autonomous system, common hardware for different applications, only need to change DC\DC converter.
Other characteristics: few more components for different application and make a model smaller than what is currently used as high voltage power supplies.
 
poster icon Poster WEP04 [1.216 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP04  
About • Received ※ 06 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 05 November 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)