Author: Mueller, A.-S.    [Müller, A.-S.]
Paper Title Page
MOP27 Design Considerations of the Corrugated Structures in a Vacuum Chamber for Impedance Studies at KARA 100
 
  • S. Maier, M. Brosi, H.J. Cha, A. Mochihashi, A.-S. Müller, M.J. Nasse, P. Schreiber, M. Schwarz
    KIT, Karlsruhe, Germany
 
  Funding: Supported by the DFG project 431704792 in the ANR-DFG collaboration project ULTRASYNC and by the Doctoral School KSETA.
Two parallel, corrugated plates will be installed at the KIT storage ring KARA (KArlsruhe Research Accelerator). This impedance manipulation structure can be used to study and eventually control the electron beam dynamics and the emitted coherent synchrotron radiation (CSR) at KARA. In this contribution, we present the design of the impedance manipulation structure with corrugated plates, simulation results showing the influence of different corrugation parameters on its impedance, and the impact of this additional impedance source on the temporal changes in the emitted CSR in the presence of the microbunching instability.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP27  
About • Received ※ 05 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 07 December 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP42 KINGFISHER: A Framework for Fast Machine Learning Inference for Autonomous Accelerator Systems 151
 
  • L. Scomparin, E. Blomley, E. Bründermann, M. Caselle, T. Dritschler, A. Kopmann, A. Mochihashi, A.-S. Müller, A. Santamaria Garcia, P. Schreiber, J.L. Steinmann, M. Weber
    KIT, Karlsruhe, Germany
  • T. Boltz
    SLAC, Menlo Park, California, USA
 
  Modern particle accelerator facilities allow new and exciting beam properties and operation modes. Traditional real-time control systems, albeit powerful, have bandwidth and latency constraints that limit the range of operating conditions currently made available to users. The capability of Reinforcement Learning to perform self-learning control policies by interacting with the accelerator is intriguing. The extreme dynamic conditions require fast real-time feedback throughout the whole control loop from the diagnostic, with novel and intelligent detector systems, all the way to the interaction with the accelerator components. In this contribution, the novel KINGFISHER framework based on the modern Xilinx Versal devices will be presented. Versal combines several computational engines, specifically combining powerful FPGA logic with programmable AI Engines in a single device. Furthermore, this system can be natively integrated with the fastest beam diagnostic tools already available, i.e. KAPTURE and KALYPSO.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP42  
About • Received ※ 07 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 09 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP24 Modeling and Experimental Evaluation of a Bunch Arrival-Time Monitor with Rod-Shaped Pickups and a Low-Pi-Voltage Ultra-Wideband Traveling Wave Electro-Optic Modulator for X-Ray Free-Electron Lasers 447
 
  • K. Kuzmin, E. Bründermann, A.-S. Müller, G. Niehues
    KIT, Eggenstein-Leopoldshafen, Germany
  • W. Ackermann, H. De Gersem
    TEMF, TU Darmstadt, Darmstadt, Germany
  • M.K. Czwalinna, H. Schlarb
    DESY, Hamburg, Germany
  • C. Eschenbaum, C. Koos, A. Kotz, A. Schwarzenberger
    IPQ KIT, Karlsruhe, Germany
  • A. Penirschke, B.E.J. Scheible
    THM, Friedberg, Germany
 
  X-ray Free-Electron Laser (XFEL) facilities, such as the 3.4-km European XFEL, use all-optical links with electro-optic bunch arrival-time monitors (BAM) for a long-range synchronization. The current BAM systems achieve a resolution of 3.5 fs for 250 pC bunches. Precise bunch arrival timing is essential for experiments, which study ultra-fast dynamical phenomena with highest temporal resolution. These experiments will crucially rely on femtosecond pulses from bunch charges well below 20 pC. The state-of-the-art BAMs are not allowing accurate timing for operation with such low bunch charges. Here we report on the progress in development of an advanced BAM (system) based on rod-shaped pickups mounted on a printed circuit board and ultra-wideband travelling-wave electro-optic modulators with low operating voltages. We perform modeling and experimental evaluation for the fabricated pickups and electro-optic modulators and analytically estimate timing jitter for the advanced BAM system. We discuss an experimental setup to demonstrate joint operation of new pickups and wideband EO modulators for low bunch charges less than 5 pC.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP24  
About • Received ※ 07 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 13 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP26 Status of a Monitor Design for Single-Shot Electro-Optical Bunch Profile Measurements at FCC-ee 455
 
  • M. Reißig, E. Bründermann, S. Funkner, B. Härer, A.-S. Müller, G. Niehues, M.M. Patil, R. Ruprecht, C. Widmann
    KIT, Karlsruhe, Germany
 
  Funding: Supported by the Doctoral School KSETA. C. W. achnowledges funding by BMBF contract number 05K19VKD. FCCIS is funded by the EU’s Horizon 2020 research and innovation programme under grant No 951754.
At the KIT electron storage ring KARA (Karlsruhe Research Accellerator) an electro-optical (EO) near-field monitor is in operation performing single-shot, turn-by-turn measurements of the longitudinal bunch profile using electro-optical spectral decoding (EOSD). In context of the Future Circular Collider Innovation Study (FCCIS), a similar setup is investigated with the aim to monitor the longitudinal bunch profile of each bunch for dedicated top-up injection at the future electron-positron collider FCC-ee. This contribution presents the status of a monitor design adapted to cope with the high-current and high-energy lepton beams foreseen at FCC-ee.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-WEP26  
About • Received ※ 05 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 11 September 2022 — Issue date ※ 24 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)