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Abstract
Modern particle accelerator facilities allow new and ex-

citing beam properties and operation modes. Traditional
real-time control systems, albeit powerful, have bandwidth
and latency constraints that limit the range of operating con-
ditions currently made available to users. The capability
of Reinforcement Learning to perform self-learning control
policies by interacting with the accelerator is intriguing. The
extreme dynamic conditions require fast real-time feedback
throughout the whole control loop from the diagnostic, with
novel and intelligent detector systems, all the way to the inter-
action with the accelerator components. In this contribution,
the novel KINGFISHER framework based on the modern
Xilinx Versal devices will be presented. Versal combines
several computational engines, specifically combining pow-
erful FPGA logic with programmable AI Engines in a single
device. Furthermore, this system can be natively integrated
with the fastest beam diagnostic tools already available, e.g.
KAPTURE and KALYPSO.

INTRODUCTION
Ensuring stable operation of the future particle accelerator

facilities will pose a challenging problem, where traditional
control systems are expected to not reach the desired per-
formance. An interesting possibility is the use of Machine
Learning (ML) techniques. Reinforcement Learning (RL)
[1] is a prominent approach, which recently has shown sev-
eral relevant results [2–5]. The basic idea is to model the
control problem as the interaction between an agent and a
system. The agent obtains some observable from the system
that are expected to carry information about an underlying
and often hidden state and chooses an action from an action
space. Then, a reward is obtained from the system giving
a metric of how good the taken action was. Reinforcement
Learning is a series of algorithms allowing to train such an
agent by using the rewards given by the system.

One of these challenging problems is the control of micro-
bunching instabilities (MBI) [6] in synchrotron light sources,
where the interaction of the beam head with the wake field
produced by the Synchrotron Radiation (SR) emitted from
the tail leads to the development of substructures in the lon-
gitudinal phase-space. One successful attempt was already
performed at SOLEIL [7], in this case using traditional con-
trol techniques based on chaos theory. The underlying idea
of this feedback loop is to stabilize the system around pre-
existing unstable equilibrium points.
∗ luca.scomparin@kit.edu
† now at SLAC, Menlo Park, California

One intriguing capability of RL is its great versatility:
by changing the reward function different goals are achiev-
able, even when they might not be characteristic of a given
stable condition. For example, the emission of Coherent
Synchrotron Radiation (CSR) could be enhanced or sup-
pressed while setting an acceptable level of fluctuation in
the emitted power. Moreover, the enhancement of a specific
radiation frequency range could be achieved.

MODULAR ARCHITECTURE
FOR FAST INFERENCE

One of the issues that can be encountered when imple-
menting RL techniques with accelerators are latency limi-
tations. Namely, the complete feedback loop (comprising
beam diagnostic detector readout, feature extraction, observ-
able evaluation with the agent and action taking) needs to
be taken in a time frame comparable to the dynamics of
the physics that needs to be controlled. In the case of the
MBI, this imposes latency constraints in the order of the
synchrotron periods, i.e. of a few tens of microseconds.

A fundamental requirement necessary in order to min-
imise deployment and testing time for different RL algo-
rithms is a modularity oriented model. Such a system can be
divided into four main parts. First, a detector readout inter-
face (1) is needed to retrieve data with low-latency and high-
throughput. This data stream from the detector is then fed
into the feature extraction part (2), which produces higher-
level observables that are then fed into the agent module (3)
that chooses an action. The action needs then to be applied
to the system, in this case the accelerator, through an action
taking part (4), that can interface to a part of the machine
control system, ideally with a low-latency connection. A
schematic view of this system is shown in Fig. 1.

On top of this inference signal path two other systems
are needed: a slow-control system and a training system.
Both of these are less time-critical compared to the feedback
path. The training system needs to keep track of the observ-
ables, of the actions taken, and of the rewards, so that this
information can be retrieved during training to update the
agents’s parameters. Meanwhile, the slow-control allows
the operator to set different parameters and tune the system
based on the needs of the facility.

KINGFISHER
The different modules and signal paths described in the

previous section have different computational requirements.
For instance, fast but simple operations are required when
interfacing with the readout electronics, while the agent
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Figure 1: Schematic view of the modular RL feedback sys-
tem. Changing detector, interface, or agent should minimally
impact the remaining blocks of the system.

could be very computationally intensive due to the need of
several floating point multiply and accumulate operations.
Moreover, in order to employ the several ML frameworks
already widely used and available [8, 9] in the training path,
high-level operations are needed.

To fulfill all these requirements a heterogeneous plat-
form is necessary. One possible choice is the Xilinx
VCK190 evaluation board [10] based on the novel Xilinx
Versal XCVC1902 Adaptive Compute Acceleration Plat-
form (ACAP). This novel device combines an FPGA and
an ARM processor in the usual System-on-Chip (SoC) con-
figuration with a powerful AI Engine Array allowing fast
floating point and integer arithmetic operations. These three
components are deeply interconnected with a low-latency,
high-throughput Network-on-Chip (NoC) that is also inte-
grated with high speed transceivers, for example a 100 giga-
bit ethernet interface.

The modular approach described in the previous section
is implemented on the VCK190 as the KINGFISHER plat-
form (Fig. 2). The system comprises several interfaces to
detector systems (KAPTURE [11], KALYPSO [12], and
THERESA [13]), and to the available accelerator longitudi-
nal feedback systems (Low Level RF (LLRF) and Bunch-
By-Bunch feedback system (BBB) [14]), all implemented as
FPGA blocks. The more computationally heavy operations,
namely feature extraction and agent inference, are carried
out by the the AI Engines, while the ARM processor has the
task to run the slow-control and the training algorithms as
Petalinux applications.

Agent
Reinforcement Learning allows great variability on the

nature of an agent. For the current problem it was shown
that a feed-forward neural network exhibits a sufficient de-
gree of control [3]. In order to evaluate the performance
of the system a simple feed-forward neural network (eight
input and output neurons, four 64 neurons wide hidden lay-
ers) was developed on the AI Engine array, as described

in [15]. The latency was shown to be almost four times
better (4.5 µs) with respect to the same network deployed on
a Zynq Ultrascale+ FPGA [15], while using 32 bit floating
point arithmetics compared to 8 bit integers. Moreover, the
system is fully reconfigurable from the processor allowing
the online updating of weights and biases that are then used
for the next computation.

The single precision floating point arithmetic and recon-
figuration capabilities are extremely intriguing: the training
of the neural networks can be performed on an identical net-
work deployed on the ARM processor, where all widespread
ML Python libraries are available, and the new agent coeffi-
cients are directly uploaded to the agent network on the AI
Engines, without the need of quantization and pruning steps
usually necessary when deploying a model on FPGA.

Feature Extraction
Features based on the work in reference [3] were imple-

mented. Namely, a stream of CSR power measurements
acquired using the KAPTURE system with a sampling rate
equal to the revolution frequency of the accelerator (in this
case ≈ 2.7 MHz) were divided in batches that are 1024 sam-
ples long. The extracted observables are respectively the
mean and variance of the acquired samples, the maximum
bin of the Discrete Fourier Transform, the maximum bin
squared absolute value normalized to the sum of the remain-
ing bins, and its ratio of imaginary to real part.

Average and standard deviation are computed using the
following equations

𝑥 =
1
𝑁

∑︁
𝑥𝑖 (1)

𝜎2
𝑥 =

1
𝑁

∑︁
𝑥2
𝑖 −

(
1
𝑁

∑︁
𝑥𝑖

)2
(2)

this specific expression for the variance is used because it
does not require knowledge of the value of the average during
computation and thus can be computed on the streaming data,
therefore reducing latency.

Regarding the Fourier Transform (FT) some care is nec-
essary: the AI Engine tiles are not able to natively compute
sine and cosine functions with floating point precision in an
efficient manner. Moreover, there is not enough memory on
the engines to store a complete lookup table of the Discrete
FT (DFT) samples (32 kB available, even though the neigh-
bouring tiles can share memory bank, allowing a maximum
of 160 kB). A possible way to circumvent this issue is to
employ an FFT algorithm, for example the Cooley–Tukey
algorithm, but this requires to have all the samples before
computing the final FFT, thus severely impacting latency.
For the sake of computational optimization, the calculation
is divided into chunks that are then summed up when a new
FT output is needed. In the formula below the summation
is divided into 𝑀 chunks, each one needing a sequence of
𝑁/𝑀 samples for the update. The final FT bin is composed
using the 𝑀 chunks. The value of 𝑀 can be chosen arbitrar-
ily, provided it is a divisor of 𝑁 .
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Figure 2: Schematic diagram showing the signal path inside of the KINGFISHER platform.
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(3)

This version allows to dramatically reduce the size of the
lookup table: each coefficient depends either on 𝑚 or on 𝑗 ,
never both, so instead of using 𝑁 coefficients per FT bin,
only 𝑁

𝑀
+ 𝑀 are needed.

When computing one 1024 sample FT every 256 input
samples the measured latency is in the order of a few tens
of microseconds. Such latency is strongly dependent on
how the computation is divided among different AI Engine
tiles. Additional optimization is ongoing in order to im-
prove latency by more cleverly managing the distribution of
workload and communications between tiles.

Training Module
In order to obtain all information necessary for training the

agent, an infrastructure composed of several Xilinx Direct
Memory Access (DMA) IPs are employed. This part is able
to monitor all data streams in the feedback path and store
them in one of the two DDR memories of the VCK190. In
the current design 8 GB of DDR4 memory are used to run
the Petalinux OS, while the remaining 8 GB of LPDDR4
store data from the DMA.

It is then possible to write data to a file for off-line analysis
and also use it directly for training employing the widespread
ML libraries and then to upload the new set of parameters
to the agent.

Pseudo-random Number Generator
Most of RL algorithms need a random source in order to

guide the exploration of new policies [1]. A pseudo-random
number generator has been developed and implemented on

the FPGA in Verilog. This module is based on the Per-
muted Congruential Generator XOR SHift Random Rota-
tion (PCG-XSH-RR) algorithm [16] with a 64 bit hidden
state. This specific implementation works at a maximum
clock frequency of 250 MHz and produces a 32 bit random
unsigned integer or floating point number every two clock
cycles. This algorithm was specifically chosen due to its
simple implementation and good quality of random number
output.

Actuator
The beamline where the diagnostic instrumentation is

located is physically separated from the control system in-
strumentation employed to apply the feedback operation. To
reduce the issues associated with this separation a Xilinx
ZCU102 evaluation board [17] was used to implement a sys-
tem that is controllable via Gigabit Ethernet and allows to
select different action types, e.g. generate several sinusoidal
analog signals with selectable amplitude and frequency, to-
gether with a white noise source (using the random number
generator from the previous section) with an output sam-
ple rate of ≈ 2.7 MHz, allowing a turn-by-turn controllable
beam kick at KARA in single-bunch operation.

The latency of the system was measured by sending a
command from KINGFISHER via a two meter long CAT6
Ethernet cable and checking with an oscilloscope the time
necessary to apply it to the analog output. The latency mea-
sured is of 2.5 µs, e.g. less than 7 full revolutions of the
beam at KARA.

KAPTURE Integration
The diagnostic signal used for the current tests is the

THz radiation sampled by a Schottky diode readout with the
KAPTURE-2 system [11]. KAPTURE-2 allows the sam-
pling of a fast signal on a turn-by-turn basis for all bunches
in the accelerator. Compared to the previous versions of the
system using the Highflex [18] board, for this integration
the new Highflex-2 [15] was used. The firmware was ported
to the newer Xilinx Zynq Ultrascale+ architecture and the

11th Int. Beam Instrum. Conf. IBIC2022, Kraków, Poland JACoW Publishing
ISBN: 978-3-95450-241-7 ISSN: 2673-5350 doi:10.18429/JACoW-IBIC2022-MOP42

09 Data Acquisition and Processing Platforms

MOP42

153

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



embedded Gigabit Ethernet MAC (GEM) was controlled
from the FPGA in order to continuously stream data of up
to 5 bunches. This interface is then connected to the GEM
on the VCK190 board as shown in the picture in Fig. 3. In
the future, the system will be improved further allowing the
streaming of all data on fast high-data throughput optical
data links.

KAPTURE

Xilinx VCK190

High ex 2

Figure 3: Picture of the VCK190 Evaluation Board
connected to the Highflex-2 board where KAPTURE is
mounted.

BEAM TESTS
The above KAPTURE and KINGFISHER system has

been tested during several beam times at the KIT synchrotron
light source KARA storage ring facility at KIT using the
1.3 GeV short-bunch operation mode. All systems were sep-
arately tested, although the closed loop tests need to wait for
upgrades to the LLRF system in order to apply the required
feedback signal. Nonetheless it was possible to perform sta-
ble measurements of the THz signal with feature extraction.
Small longitudinal kicks where applied by connecting the
actuator analog output to the longitudinal BBB feedback sys-
tem while disabling the internal filters so the signal is directly
applied to the beam. This configuration was shown to be
working by inducing longitudinal oscillations at specific fre-
quencies, as shown in Fig. 4, where the spectrum of a Beam
Position Monitor (BPM) read with the BBB system clearly
shows a peak at the excitation frequency. Unfortunately this
kind of action is not strong enough in the current longitudi-
nal BBB setup to sufficiently influence the micro-bunching
instability.

CONCLUSION
The novel KINGFISHER platform was introduced as

a general low-latency inference system for Reinforcement
Learning for intelligent control of particle accelerators. The
main blocks were discussed, as well as their architecture.
First results during beamtime have shown that all blocks
work correctly, leaving the addition of a low-latency feed-
back input to the accelerator control system as the last step

Frequency [kHz]

O
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il
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d
B

]

No excitation

Excitation at 3fs

Figure 4: Sinusoidal excitation at three times the synchrotron
frequency: top plot shows the BPM spectrum when the
excitation is off, bottom plot when the excitation is on. The
vertical dashed green line shows the frequency of the applied
excitation.

before the final testing of the complete feedback loop can be
carried out.

ACKNOWLEDGEMENTS
We would like to thank Y.-L. Mathis and his team for

beamtime and support at the KARA IR1 beamline.
The work was in part supported by BMBF ErUM-Pro

FKZ 05K19VKC (TiMo) and in part by the Innovationspool
Project ACCLAIM.

REFERENCES
[1] R. S. Sutton and A. G. Barto, Reinforcement Learning, sec-

ond edition. Cambridge, MA, USA: MIT Press, 2018.
[2] W. Wang et al., “Accelerated Deep Reinforcement Learning

for Fast Feedback of Beam Dynamics at KARA,” IEEE Trans.
Nucl. Sci., vol. 68, pp. 1794–1800, 2021.
doi:10.1109/TNS.2021.3084515

[3] T. Boltz, “Micro-bunching control at electron storage rings
with reinforcement learning,” Ph.D. dissertation, Karlsruher
Institut für Technologie (KIT), Germany, 2021.
doi:10.5445/IR/1000140271

[4] J. S. John et al., “Real-time artificial intelligence for accel-
erator control: A study at the fermilab booster,” Phys. Rev.
Accel. Beams, vol. 24, p. 104 601, 2021.
doi:10.1103/PhysRevAccelBeams.24.104601

[5] F. H. O’Shea, N. Bruchon, and G. Gaio, “Policy gradient
methods for free-electron laser and terahertz source opti-
mization and stabilization at the fermi free-electron laser at
elettra,” Phys. Rev. Accel. Beams, vol. 23, p. 122 802, 2020.
doi:10.1103/PhysRevAccelBeams.23.122802

[6] M. Brosi et al., “Systematic studies of the microbunching in-
stability at very low bunch charges,” Phys. Rev. Accel. Beams,
vol. 22, p. 020 701, 2019.
doi:10.1103/PhysRevAccelBeams.22.020701

[7] C. Evain et al., “Stable coherent terahertz synchrotron ra-
diation from controlled relativistic electron bunches,” Nat.
Phys., vol. 15, pp. 635–639, 2019.
doi:10.1038/s41567-019-0488-6

11th Int. Beam Instrum. Conf. IBIC2022, Kraków, Poland JACoW Publishing
ISBN: 978-3-95450-241-7 ISSN: 2673-5350 doi:10.18429/JACoW-IBIC2022-MOP42

MOP42C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

154 09 Data Acquisition and Processing Platforms



[8] A. Paszke et al., “Pytorch: An imperative style, high-
performance deep learning library,” in Proc. Advances
in Neural Information Processing Systems, vol. 32, 2019,
pp. 8024–8035.

[9] Martín Abadi et al., TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, Software available from ten-
sorflow.org, 2015. https://www.tensorflow.org

[10] Xilinx VCK190 Evaluation Board. https://www.xilinx.
com/products/boards-and-kits/vck190.html

[11] M. Caselle, “KAPTURE-2. a picosecond sampling system for
individual THz pulses with high repetition rate,” J. Instrum.,
vol. 12, p. C01040, 2017.
doi:10.1088/1748-0221/12/01/c01040

[12] L. Rota et al., “KALYPSO: Linear array detector for high-
repetition rate and real-time beam diagnostics,” Nucl. In-
strum. Methods Phys. Res., Sect. A, vol. 936, pp. 10–13,
2019. doi:10.1016/j.nima.2018.10.093

[13] O. Manzhura et al., “Terahertz Sampling Rates with Pho-
tonic Time-Stretch for Electron Beam Diagnostics,” in Proc.

IPAC’22, Bangkok, Thailand, 2022, pp. 263–266.
doi:10.18429/JACoW-IPAC2022-MOPOPT017

[14] Dimtel, Inc., https://www.dimtel.com

[15] W. Wang, “Towards intelligent data acquisition systems with
embedded deep learning on MPSoC,” en, Ph.D. dissertation,
Karlsruher Institut für Technologie (KIT), Germany, 2021.
doi:10.5445/IR/1000133898

[16] M. E. O’Neill, “PCG: A family of simple fast space-efficient
statistically good algorithms for random number generation,”
Harvey Mudd College, Tech. Rep. HMC-CS-2014-0905,
2014.

[17] Xilinx ZCU102 Evaluation Board. https://www.xilinx.
com/products/boards-and-kits/ek-u1-zcu102-
g.html

[18] M. Caselle et al., “A high-speed DAQ framework for future
high-level trigger and event building clusters,” J. Instrum.,
vol. 12, p. C03015, 2017.
doi:10.1088/1748-0221/12/03/c03015

11th Int. Beam Instrum. Conf. IBIC2022, Kraków, Poland JACoW Publishing
ISBN: 978-3-95450-241-7 ISSN: 2673-5350 doi:10.18429/JACoW-IBIC2022-MOP42

09 Data Acquisition and Processing Platforms

MOP42

155

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I


