Author: Martins, J.P.S.
Paper Title Page
MOP40 Synchronous Data Service at the European Spallation Source 148
 
  • R. Titmarsh
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J.F. Esteban Müller, J.P.S. Martins
    ESS, Lund, Sweden
 
  The Synchronous Data Service (SDS) is a tool to monitor and capture events in the European Spallation Source, building on top of the EPICS control system. Large amounts of data from different input output controllers are acquired and synchronised at the level of beam pulses. The acquisition can be triggered by beam events though the timing system or manually by a user. Captured data is stored in standardised NeXus files and indexed in a database for easy searching and retrieval.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-MOP40  
About • Received ※ 07 September 2022 — Revised ※ 09 September 2022 — Accepted ※ 12 September 2022 — Issue date ※ 12 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP23 Commissioning of the Timing System at ESS 281
 
  • N. Milas, G.S. Fedel, A.A. Gorzawski, J.J. Jamróz, J.P.S. Martins
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS), currently under construction and initial commissioning in Lund, Sweden, will be the brightest spallation neutron source in the world, when its driving proton linac achieves the design power of 5 MW at 2 GeV. Such a high power requires production, efficient acceleration, and almost no-loss transport of a high current beam, thus making design and beam commissioning of this machine challenging. The commissioning runs of 2021 and early 2022 were the first where the master timing system for the linac was fully available. As a consequence of that, the beam actuators and beam monitoring equipment relied fully on timing events sent accross the machine, not only to be triggered to act but also to get the configuration. In this paper, we describe the timing system as available today, present how we define and create the beam pulses using the available parameters. We also present planned future upgrades and other outlook for the system.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2022-TUP23  
About • Received ※ 07 September 2022 — Revised ※ 10 September 2022 — Accepted ※ 13 September 2022 — Issue date ※ 12 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)