
SYNCHRONOUS DATA SERVICE AT THE
EUROPEAN SPALLATION SOURCE

R. Titmarsh∗, ISIS, STFC, Rutherford Appleton Laboratory, Oxfordshire, UK
J. F. Esteban Müller, J. P. S. Martins, European Spallation Source ERIC, Lund, Sweden

Abstract
The Synchronous Data Service (SDS) is a tool to mon-

itor and capture events in the European Spallation Source,
building on top of the EPICS control system. Large amounts
of data from different input-output controllers are acquired
and synchronised at the level of beam pulses. The acqui-
sition can be triggered by beam events through the timing
system or manually by a user. Captured data is stored in
standardised NeXus files and indexed in a database for easy
searching and retrieval.

INTRODUCTION
At ESS, the operation of the proton linac, target, and neu-

tron experiments are controlled using the EPICS [1] control
system. EPICS is a distributed control system, and that
means that the data produced in different Input/Output Con-
trollers (IOC) is received by clients in a non-deterministic
order.

At our facility, EPICS’ data is archived by the Archiver
Appliance [2]. This tool stores each signal as a time series,
so the effort of correlating data from different sources lies
with the client side.

In some applications, it is important to obtain a snapshot
of the machine status containing several signals from various
sources that belong to the same beam pulse. Typical exam-
ples are machine tuning and optimization, or troubleshooting
of failures (post-mortem).

In order to ensure that the data is synchronized in all rel-
evant devices, a precise timing system capable to generate
triggering signals is required. In this paper we describe both
the hardware and software implementation under develop-
ment at ESS that will allow pulse-synchronous data acqui-
sitions and archival, which we refer to as the Synchronous
Data Service (SDS).

SOFTWARE ARCHITECTURE
A diagram of the SDS architecture is shown in Fig. 1. The

main design goals are scalability and flexibility, and for that
reason we followed a microservices pattern.

The service consists of 3 different types of components
or microservices: one or more collector services that collect
data from EPICS IOCs and produce NeXus [3] files, an
indexer service that aggregates metadata from the collectors,
and one or more data retriever services that allow users to
query for the data in different ways. These components and
their prototype implementation are described in more detail
below.
∗ ross.titmarsh@stfc.ac.uk

These microservices rely on a storage backend consisting
of an Elasticsearch [4] database that stores the metadata and
a CEPH-based [5] distributed file system that contains the
NeXus files.

Collector Services
We developed a prototype version of a generic collector

service. It is implemented in Python 3 using the asyncio
framework. PV Access is supported through the p4p [6]
package. Channel Access support was considered not neces-
sary since our control system is fully EPICS7 compliant.

This service creates a set of "collectors" from definitions
in a JSON file, each collector listens for a single type of
event on a set of EPICS PVs. Each instance of this service
has a "collector manager" that listens to the EPICS PVs of
the collectors within it, parses the received messages and
forwards them to the relevant collector. Multiple instances
of the service can be deployed to distribute the load. The
collector collects the events into "datasets" by the pulse ID
of the triggering pulse. The information about the triggering
event must be included by the IOC and it is discussed later.

Using asyncio allows the many collectors to run concur-
rently, allowing multiple datasets to be constructed at the
same time. This means it can handle events arriving out of
order or overlapping each other.

The dataset is a virtual HDF5 file that is expanded as
events are received. When the dataset is complete (defined
as a configurable timeout, default is 2 seconds), it is written
to a remote file system for storage and its metadata is sent
to the indexer service. Datasets can be submitted with an
"expire by" timestamp after which the data can be removed
from storage.

Custom collector services can be developed to support
other protocols or for different use cases. For instance, a
post-mortem event triggered after the machine trips can
generate a huge amount of data. In that case some systems
may be configured to act as collector services by storing data
locally for later transferring it to the central storage and to
the indexer service.

Indexer Service
This service receives the collector definitions and the

datasets’ metadata and stores them in a database to enable
fast search and retrieval.

The prototype was developed in Python 3 using the
FastAPI [7] framework. It provides a REST interface that
can be consumed by the collector services.

The Elasticsearch database was chosen for its capability
of handling large volumes of data and for enabling complex

11th Int. Beam Instrum. Conf. IBIC2022, Kraków, Poland JACoW Publishing
ISBN: 978-3-95450-241-7 ISSN: 2673-5350 doi:10.18429/JACoW-IBIC2022-MOP40

MOP40C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

148 09 Data Acquisition and Processing Platforms



DB
(elasticsearch)

SDS client 1 SDS client 2
IOC 1 IOC 2

PV Access

Nexus files

Nexus files

Storage
(CEPH)

IOC 3 IOC 4

Nexus filesNexus files

Queries

New data New data

Data 
retriever
service

Indexer
service

Collector 
service 1

Collector 
service 2

Figure 1: SDS architecture. The clients are shown on the top layer and can be either EPICS IOCs generating new data or
SDS clients querying datasets and receiving NeXus files. In the middle layer it is shown the SDS services, including the
collector services that collect data from the IOCs and interface with the indexer service that aggregates the metadata, and
also the data retriever service that provides a REST interface for users to retrieve data. Finally, the bottom layer shows the
storage and indexing backends.

queries with high performance. It is also simple to scale its
performance by setting up a cluster.

Data Retriever Service

The data retriever service is the main entry point for users
who want to access the data.

The technologies chosen for this prototype are the same as
for the indexer service: Python 3 and the FastAPI framework.
The retriever provides a REST interface for querying datasets
and files. Datasets can be queried by collector, a date range,
or a triggering pulse id range. Files can be retrieved using
the same queries as for datasets, or directly by specifying a
filename or dataset ID.

When a query result spans over several files or a subset of
a file, the retriever service generates a new NeXus file that
contains only the requested datasets.

The retriever service can also be scaled by deploying
several instances and using an HTTP load balancer, e.g.,
Nginx or Apache.

DEPLOYMENT

A mirror of the code in our internal repository service,
Gitlab, runs a continuous integration pipeline that generates
a Docker image containing the SDS software. This simplifies
the deployment to just pulling the Docker image and setting
up a few environment variables.

TIMING SYSTEM
The timing system of the ESS linac is based on the MRF

timing system [8]. The MRF system works with determin-
istic transmission of events from the Event Master (EVM)
to the Event Receivers (EVR) via dedicated fibre-optics net-
work. On the EVR side, the arrival of events is used to
generate configurable electrical signals that can be used as
acquisition or synchronization triggers on various devices.
SDS will use dedicated events to trigger acquisitions, either
periodically or on-demand. SDS events can be manually
triggered by a user or generated after another event (e.g.,
machine trip).

The MRF timing network can also distribute data packets
to all nodes, which are decoded at the EVRs and exported
as EPICS PVs. At ESS, this data package is transmitted
just before the next machine cycle and contains information
about the beam that will be generated in the next round,
such as beam mode, beam destination, beam length and the
unique ID of the machine cycle. EPICS IOCs that are driven
by events and triggers from the timing system can obtain
precise timestamps and the pulse ID from the EVRs and add
this information to the data structure of the PVs that contain
measurement data. This ID is used by the SDS to correlate
the data.

SDS can in principle be used together with any other
timing system as long as it defines events and pulse IDs
in the same way. In practice, one could also implement a
custom collector that generates these metadata from other
sources.

11th Int. Beam Instrum. Conf. IBIC2022, Kraków, Poland JACoW Publishing
ISBN: 978-3-95450-241-7 ISSN: 2673-5350 doi:10.18429/JACoW-IBIC2022-MOP40

09 Data Acquisition and Processing Platforms

MOP40

149

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



INPUT/OUTPUT CONTROLLERS
Some design considerations are required for IOCs to be

compatible with SDS. The PVs that will be monitored by
SDS need to be triggered by an event receiver (EVR) from
the timing system. For systems that don’t have a physical in-
terface to EVRs, software triggers derived from the specific
event counter can be used to synchronize acquisition (with
reduced accuracy). For PVs with array data, the preferred
structure is the NTNDArray format, in which the metadata
containing the information about the timing event (event
code and name) that triggered the SDS event can be ap-
pended to the structure as NTAttribute fields. For scalar
PVs, a custom Normative Types structure will be used to
encapsulate data and metadata. In both cases the pulse ID
from the timing event that triggers the data acquisition needs
to be copied into the userTag field of the PV and the times-
tamp corresponding to the SDS event should be copied to
the seconds and nanosseconds fields.

In some use cases, the user might be interested in data
from several pulses before and/or after the SDS triggering
event. For that cases, we implemented a configurable circular
buffer that continuously runs in the IOC. When an SDS event
is received, it sends all the pulses stored in the buffer and then
keeps sending the next few pulses as configured. Each PV
update sent by the IOC will be tagged with the corresponding
pulse ID, and all updates will share the same metadata.

NEXT STEPS
Now that we have a running prototype of the SDS soft-

ware, we are planning to deploy it to a test environment for
integrated testing with real hardware.

After that, a graphical user interface would be needed. At
the moment we are exploring the use of PSI’s Databuffer
UI [9] as a simple user interface that aggregates data both
from SDS and also from the Archiver Appliance instances
running at ESS. It displays data from PVs as time series.

Later we would need to develop a dedicated UI that en-
ables users to browse the collectors and datasets, and that
more easily displays correlated data for a single pulse.

SUMMARY
The software architecture of the SDS system has been

presented and described in detail. A first prototype of the
system is ready and tested with emulated IOCs. The system
shows high flexibility and the possibility of scaling up for
better performance.

The code can be found at https://github.com/
EPICS-SDS/sds.

ACKNOWLEDGEMENTS
The authors would like to thank Ricardo Fernandes for pre-

vious work on collecting system requirements, and together
with Lars Johansson for information about databuffer-ui. We
are also grateful to Timo Korhonen for his useful input on
the system design. Thanks also to Bryan Jones for his sup-
port in making possible this collaboration between ISIS and
ESS.

REFERENCES
[1] EPICS collaboration, https://epics-controls.org/

[2] M. Shankar, The EPICS Archiver Appliance documentation,
https://slacmshankar.github.io/epicsarchiver_
docs

[3] NeXus data format website,
http://www.nexusformat.org/

[4] Elasticsearch website, https://www.elastic.co/

[5] CEPH website, https://ceph.io/en/

[6] M. Davidsaver, PVAccess for Python documentation,
https://mdavidsaver.github.io/p4p/

[7] S. Ramírez, FastAPI documentation,
https://fastapi.tiangolo.com/

[8] MRF website, http://www.mrf.fi/

[9] Databuffer-ui repository,
https://github.com/paulscherrerinstitute/
databuffer-ui

11th Int. Beam Instrum. Conf. IBIC2022, Kraków, Poland JACoW Publishing
ISBN: 978-3-95450-241-7 ISSN: 2673-5350 doi:10.18429/JACoW-IBIC2022-MOP40

MOP40C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

150 09 Data Acquisition and Processing Platforms


